TI中文支持网
TI专业的中文技术问题搜集分享网站

关于F28M35的ADC的中断问题?特别要请TI的工程师们作答!

各位TI的大牛们,请解答一个问题!

     最近在用TI的Concerto系列F28M35H52C 做一个模拟信号采集的项目。在ADC方面遇到一些问题。不知是否方便予以解答。前两天在deyisupport上发过帖子,但没人回答,故现在想你求援。

     问题描述:在我的设计中,ADC1/ADC2采用overlap、依次顺序进行转换,各SOC0–SOC15均采用定时器TINT1的100us定时去触发,当SOC15转换完毕后去触发ADCINT1(ADC2的SOC15触发ADCINT2),ADCINT1/ADCINT2在PIE中不允许中断,通过查询中断标记位判断16个SOC转换是否完成。在程序中在各步加设GIO置1或0的方式,通过示波器观察各步的执行时间和状态,发现采用查询ADCINT1中断标记位时,从ADC启动(通过TINT1启动)到ADC1 的中断标记置位时的时间间隔只有惊人的0.8us这么短,那可是16个SOC的转换啊!根据TI的SPRUH22F中P900到的参数,应该是543ns X 16=8.5us左右,差距是10倍左右!而采用查询ADCCTL1.bit.ADCBSY和ADCCTL1.bit.ADCBSYCHN方式,测得到SOC15转换完毕的时间大约8us,还算靠谱! 通过设置断点,发现在中断标记为置位时,ADCBSY=1,且ADCBSYCHN=2,说明在SOC1转换完毕时,就触发了中断!但在初始化代码中,明明是设置的SOC15。

Adc1Regs.INTSEL1N2.bit.INT1SEL = 15;                         // setup ADC1 EOC15 to trigger ADCINT1

不知是什么原因。

我的问题就是:如何通过查询相关的ADCINT1中断标记位,判断16个SOC转换是否完成?

ADCINT1/ADCINT2和TINT1均允许中断,但在PIE中却不允许中断,通过查询方式进行判断。

以下是相关的程序代码,请帮忙看看是否有问题!谢谢! 

由于自己设计的硬件还在打样中。所以目前硬件用的还是Concerto F28M35xx controlCARD。软件是在\ti\controlSUITE\device_support\f28m36x\v206修改的。

 EALLOW;

Adc1Regs.ADCCTL1.bit.ADCBGPWD = 1;     // Power ADC1 BG, Bandgap circuit(带隙基准电路) 上电, 见TRM P911 ADCCTL1
Adc1Regs.ADCCTL1.bit.ADCREFPWD = 1;   // Power reference,Reference buffers circuit power down
Adc1Regs.ADCCTL1.bit.ADCPWDN = 1;       // Power ADC1, ADC power down
Adc1Regs.ADCCTL1.bit.ADCENABLE = 1;    // Enable ADC1
Adc1Regs.ADCCTL1.bit.ADCREFSEL = 0;    // Select interal BG, Internal/external reference select

Adc1Regs.ADCCTL2.bit.ADCNONOVERLAP = 0;             // 0–Enable overlap mode 
Adc1Regs.ADCCTL1.bit.INTPULSEPOS = 1;                   // ADCINT1 trips after AdcResults latch
Adc1Regs.INTSEL1N2.bit.INT1E = 1;                               // Enabled ADCINT1
Adc1Regs.INTSEL1N2.bit.INT1CONT = 0;                       // Disable ADCINT1 Continuous mode
Adc1Regs.INTSEL1N2.bit.INT1SEL = 15;                         // setup ADC1 EOC15 to trigger ADCINT1
Adc1Regs.SOCPRICTL.bit.SOCPRIORITY = 15;             // 15: SOC0-SOC14 are high priority, SOC15 is in round robin mode.

AnalogSysctrlRegs.TRIG1SEL.all     = 2;     // Assigning TINT1 (CPU Timer 1) to ADC TRIGGER 1 of the ADC1 and ADC2 module 

Adc1Regs.ADCSOC0CTL.bit.CHSEL = 0; // set SOC0 channel select to ADC1A0 
Adc1Regs.ADCSOC1CTL.bit.CHSEL = 8; // set SOC1 channel select to ADC1B0
Adc1Regs.ADCSOC2CTL.bit.CHSEL = 4; // set SOC2 channel select to ADC1A4
Adc1Regs.ADCSOC3CTL.bit.CHSEL = 12; // set SOC3 channel select to ADC1B4
Adc1Regs.ADCSOC4CTL.bit.CHSEL = 0; // set SOC4 channel select to ADC1A0
Adc1Regs.ADCSOC5CTL.bit.CHSEL = 8; // set SOC5 channel select to ADC1B0
Adc1Regs.ADCSOC6CTL.bit.CHSEL = 4; // set SOC6 channel select to ADC1A4
Adc1Regs.ADCSOC7CTL.bit.CHSEL = 12; // set SOC7 channel select to ADC1B4
Adc1Regs.ADCSOC8CTL.bit.CHSEL = 0; // set SOC8 channel select to ADC1A0
Adc1Regs.ADCSOC9CTL.bit.CHSEL = 8; // set SOC9 channel select to ADC1B0
Adc1Regs.ADCSOC10CTL.bit.CHSEL = 4; // set SOC10 channel select to ADC1A4
Adc1Regs.ADCSOC11CTL.bit.CHSEL = 12; // set SOC11 channel select to ADC1B4
Adc1Regs.ADCSOC12CTL.bit.CHSEL = 0; // set SOC12 channel select to ADC1A0
Adc1Regs.ADCSOC13CTL.bit.CHSEL = 8; // set SOC13 channel select to ADC1B0
Adc1Regs.ADCSOC14CTL.bit.CHSEL = 4; // set SOC14 channel select to ADC1A4
Adc1Regs.ADCSOC15CTL.bit.CHSEL = 12; // set SOC15 channel select to ADC1B4

Adc1Regs.ADCSOC0CTL.bit.TRIGSEL = 5; // Set SOC0 start trigger to ADC Trigger 1 of the ADC 
Adc1Regs.ADCSOC1CTL.bit.TRIGSEL = 5; // set SOC1 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC2CTL.bit.TRIGSEL = 5; // Set SOC2 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC3CTL.bit.TRIGSEL = 5; // set SOC3 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC4CTL.bit.TRIGSEL = 5; // Set SOC4 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC5CTL.bit.TRIGSEL = 5; // set SOC5 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC6CTL.bit.TRIGSEL = 5; // Set SOC6 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC7CTL.bit.TRIGSEL = 5; // set SOC7 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC8CTL.bit.TRIGSEL = 5; // Set SOC8 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC9CTL.bit.TRIGSEL = 5; // set SOC9 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC10CTL.bit.TRIGSEL = 5; // Set SOC10 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC11CTL.bit.TRIGSEL = 5; // set SOC11 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC12CTL.bit.TRIGSEL = 5; // Set SOC12 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC13CTL.bit.TRIGSEL = 5; // set SOC13 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC14CTL.bit.TRIGSEL = 5; // Set SOC14 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC15CTL.bit.TRIGSEL = 5; // set SOC15 start trigger to ADC Trigger 1 of the ADC

Adc1Regs.ADCSOC0CTL.bit.ACQPS = 6; // set SOC0 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1) 
Adc1Regs.ADCSOC1CTL.bit.ACQPS = 6; // set SOC1 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC2CTL.bit.ACQPS = 6; // set SOC2 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC3CTL.bit.ACQPS = 6; // set SOC3 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC4CTL.bit.ACQPS = 6; // set SOC4 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC5CTL.bit.ACQPS = 6; // set SOC5 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC6CTL.bit.ACQPS = 6; // set SOC6 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC7CTL.bit.ACQPS = 6; // set SOC7 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC8CTL.bit.ACQPS = 6; // set SOC8 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC9CTL.bit.ACQPS = 6; // set SOC9 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC10CTL.bit.ACQPS = 6; // set SOC10 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC11CTL.bit.ACQPS = 6; // set SOC11 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC12CTL.bit.ACQPS = 6; // set SOC12 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC13CTL.bit.ACQPS = 6; // set SOC13 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC14CTL.bit.ACQPS = 6; // set SOC14 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC15CTL.bit.ACQPS = 6; // set SOC15 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)

EDIS;

while(CpuTimer1Regs.TCR.bit.TIF==0);                   //This flag gets set when the CPU-timer decrements to zero, 100us

CpuTimer1Regs.TCR.bit.TIF = 1;                             // Writing a 1 to this bit clears the flag

POINTPULSE_DAT_REG = 1;                                // GPIO31– point pulse, point sanmple strat

//while((Adc1Regs.ADCCTL1.bit.ADCBSY !=0) ||(Adc1Regs.ADCCTL1.bit.ADCBSYCHN != 0x0f));

                                                           // 判断BUSY是否空闲,且最后一个通道是否是SOC15

while(Adc1Regs.ADCINTFLG.bit.ADCINT1==0);                     // 等待ADCINT1信号产生(由SOC15转换完毕产生)
Adc1Regs.ADCINTFLGCLR.bit.ADCINT1 = 1;                        // 清除ADCINT1中断信号

POINTPULSE_DAT_REG = 0;                                                // high level width: 16 socs total time(include: Sample time + Conversion Time)

以上问题,希望各位大牛们解答!

hong pu:

我28035 也遇到这问题。不知是不是bug. int1中断源选eoc7以下的都没问题。过了7就不行。

各位TI的大牛们,请解答一个问题!

     最近在用TI的Concerto系列F28M35H52C 做一个模拟信号采集的项目。在ADC方面遇到一些问题。不知是否方便予以解答。前两天在deyisupport上发过帖子,但没人回答,故现在想你求援。

     问题描述:在我的设计中,ADC1/ADC2采用overlap、依次顺序进行转换,各SOC0–SOC15均采用定时器TINT1的100us定时去触发,当SOC15转换完毕后去触发ADCINT1(ADC2的SOC15触发ADCINT2),ADCINT1/ADCINT2在PIE中不允许中断,通过查询中断标记位判断16个SOC转换是否完成。在程序中在各步加设GIO置1或0的方式,通过示波器观察各步的执行时间和状态,发现采用查询ADCINT1中断标记位时,从ADC启动(通过TINT1启动)到ADC1 的中断标记置位时的时间间隔只有惊人的0.8us这么短,那可是16个SOC的转换啊!根据TI的SPRUH22F中P900到的参数,应该是543ns X 16=8.5us左右,差距是10倍左右!而采用查询ADCCTL1.bit.ADCBSY和ADCCTL1.bit.ADCBSYCHN方式,测得到SOC15转换完毕的时间大约8us,还算靠谱! 通过设置断点,发现在中断标记为置位时,ADCBSY=1,且ADCBSYCHN=2,说明在SOC1转换完毕时,就触发了中断!但在初始化代码中,明明是设置的SOC15。

Adc1Regs.INTSEL1N2.bit.INT1SEL = 15;                         // setup ADC1 EOC15 to trigger ADCINT1

不知是什么原因。

我的问题就是:如何通过查询相关的ADCINT1中断标记位,判断16个SOC转换是否完成?

ADCINT1/ADCINT2和TINT1均允许中断,但在PIE中却不允许中断,通过查询方式进行判断。

以下是相关的程序代码,请帮忙看看是否有问题!谢谢! 

由于自己设计的硬件还在打样中。所以目前硬件用的还是Concerto F28M35xx controlCARD。软件是在\ti\controlSUITE\device_support\f28m36x\v206修改的。

 EALLOW;

Adc1Regs.ADCCTL1.bit.ADCBGPWD = 1;     // Power ADC1 BG, Bandgap circuit(带隙基准电路) 上电, 见TRM P911 ADCCTL1
Adc1Regs.ADCCTL1.bit.ADCREFPWD = 1;   // Power reference,Reference buffers circuit power down
Adc1Regs.ADCCTL1.bit.ADCPWDN = 1;       // Power ADC1, ADC power down
Adc1Regs.ADCCTL1.bit.ADCENABLE = 1;    // Enable ADC1
Adc1Regs.ADCCTL1.bit.ADCREFSEL = 0;    // Select interal BG, Internal/external reference select

Adc1Regs.ADCCTL2.bit.ADCNONOVERLAP = 0;             // 0–Enable overlap mode 
Adc1Regs.ADCCTL1.bit.INTPULSEPOS = 1;                   // ADCINT1 trips after AdcResults latch
Adc1Regs.INTSEL1N2.bit.INT1E = 1;                               // Enabled ADCINT1
Adc1Regs.INTSEL1N2.bit.INT1CONT = 0;                       // Disable ADCINT1 Continuous mode
Adc1Regs.INTSEL1N2.bit.INT1SEL = 15;                         // setup ADC1 EOC15 to trigger ADCINT1
Adc1Regs.SOCPRICTL.bit.SOCPRIORITY = 15;             // 15: SOC0-SOC14 are high priority, SOC15 is in round robin mode.

AnalogSysctrlRegs.TRIG1SEL.all     = 2;     // Assigning TINT1 (CPU Timer 1) to ADC TRIGGER 1 of the ADC1 and ADC2 module 

Adc1Regs.ADCSOC0CTL.bit.CHSEL = 0; // set SOC0 channel select to ADC1A0 
Adc1Regs.ADCSOC1CTL.bit.CHSEL = 8; // set SOC1 channel select to ADC1B0
Adc1Regs.ADCSOC2CTL.bit.CHSEL = 4; // set SOC2 channel select to ADC1A4
Adc1Regs.ADCSOC3CTL.bit.CHSEL = 12; // set SOC3 channel select to ADC1B4
Adc1Regs.ADCSOC4CTL.bit.CHSEL = 0; // set SOC4 channel select to ADC1A0
Adc1Regs.ADCSOC5CTL.bit.CHSEL = 8; // set SOC5 channel select to ADC1B0
Adc1Regs.ADCSOC6CTL.bit.CHSEL = 4; // set SOC6 channel select to ADC1A4
Adc1Regs.ADCSOC7CTL.bit.CHSEL = 12; // set SOC7 channel select to ADC1B4
Adc1Regs.ADCSOC8CTL.bit.CHSEL = 0; // set SOC8 channel select to ADC1A0
Adc1Regs.ADCSOC9CTL.bit.CHSEL = 8; // set SOC9 channel select to ADC1B0
Adc1Regs.ADCSOC10CTL.bit.CHSEL = 4; // set SOC10 channel select to ADC1A4
Adc1Regs.ADCSOC11CTL.bit.CHSEL = 12; // set SOC11 channel select to ADC1B4
Adc1Regs.ADCSOC12CTL.bit.CHSEL = 0; // set SOC12 channel select to ADC1A0
Adc1Regs.ADCSOC13CTL.bit.CHSEL = 8; // set SOC13 channel select to ADC1B0
Adc1Regs.ADCSOC14CTL.bit.CHSEL = 4; // set SOC14 channel select to ADC1A4
Adc1Regs.ADCSOC15CTL.bit.CHSEL = 12; // set SOC15 channel select to ADC1B4

Adc1Regs.ADCSOC0CTL.bit.TRIGSEL = 5; // Set SOC0 start trigger to ADC Trigger 1 of the ADC 
Adc1Regs.ADCSOC1CTL.bit.TRIGSEL = 5; // set SOC1 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC2CTL.bit.TRIGSEL = 5; // Set SOC2 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC3CTL.bit.TRIGSEL = 5; // set SOC3 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC4CTL.bit.TRIGSEL = 5; // Set SOC4 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC5CTL.bit.TRIGSEL = 5; // set SOC5 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC6CTL.bit.TRIGSEL = 5; // Set SOC6 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC7CTL.bit.TRIGSEL = 5; // set SOC7 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC8CTL.bit.TRIGSEL = 5; // Set SOC8 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC9CTL.bit.TRIGSEL = 5; // set SOC9 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC10CTL.bit.TRIGSEL = 5; // Set SOC10 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC11CTL.bit.TRIGSEL = 5; // set SOC11 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC12CTL.bit.TRIGSEL = 5; // Set SOC12 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC13CTL.bit.TRIGSEL = 5; // set SOC13 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC14CTL.bit.TRIGSEL = 5; // Set SOC14 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC15CTL.bit.TRIGSEL = 5; // set SOC15 start trigger to ADC Trigger 1 of the ADC

Adc1Regs.ADCSOC0CTL.bit.ACQPS = 6; // set SOC0 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1) 
Adc1Regs.ADCSOC1CTL.bit.ACQPS = 6; // set SOC1 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC2CTL.bit.ACQPS = 6; // set SOC2 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC3CTL.bit.ACQPS = 6; // set SOC3 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC4CTL.bit.ACQPS = 6; // set SOC4 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC5CTL.bit.ACQPS = 6; // set SOC5 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC6CTL.bit.ACQPS = 6; // set SOC6 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC7CTL.bit.ACQPS = 6; // set SOC7 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC8CTL.bit.ACQPS = 6; // set SOC8 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC9CTL.bit.ACQPS = 6; // set SOC9 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC10CTL.bit.ACQPS = 6; // set SOC10 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC11CTL.bit.ACQPS = 6; // set SOC11 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC12CTL.bit.ACQPS = 6; // set SOC12 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC13CTL.bit.ACQPS = 6; // set SOC13 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC14CTL.bit.ACQPS = 6; // set SOC14 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC15CTL.bit.ACQPS = 6; // set SOC15 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)

EDIS;

while(CpuTimer1Regs.TCR.bit.TIF==0);                   //This flag gets set when the CPU-timer decrements to zero, 100us

CpuTimer1Regs.TCR.bit.TIF = 1;                             // Writing a 1 to this bit clears the flag

POINTPULSE_DAT_REG = 1;                                // GPIO31– point pulse, point sanmple strat

//while((Adc1Regs.ADCCTL1.bit.ADCBSY !=0) ||(Adc1Regs.ADCCTL1.bit.ADCBSYCHN != 0x0f));

                                                           // 判断BUSY是否空闲,且最后一个通道是否是SOC15

while(Adc1Regs.ADCINTFLG.bit.ADCINT1==0);                     // 等待ADCINT1信号产生(由SOC15转换完毕产生)
Adc1Regs.ADCINTFLGCLR.bit.ADCINT1 = 1;                        // 清除ADCINT1中断信号

POINTPULSE_DAT_REG = 0;                                                // high level width: 16 socs total time(include: Sample time + Conversion Time)

以上问题,希望各位大牛们解答!

10#:

问题描述得非常详细,而且分析手段也很好,要是大家都这样报告问题就能大幅提高效率。

有一个问题想确认一下,你描述的现象是第一次出现,还是后面每次都出现?

我简单看了相关配置和你的需求描述,基本没有什么问题,唯一的疑问是不确定为什么配置:

Adc1Regs.SOCPRICTL.bit.SOCPRIORITY = 15;  

根据你的要求,建议更改为0比较合理。

同时,不知道你是否可以观察一下,“ 通过设置断点,发现在中断标记为置位时”,Adc1Regs.SOCPRICTL.bit.RRPOINTER的值是多少?

是否有发生中断标志溢出呢?查看ADCINTOVF寄存器。

最后,有可能芯片存在的一个错误标志位的问题在以下帖子里有描述,那么会建议你在进行触发和转换之前,提前清除中断标志位和中断溢出标志位:

https://e2e.ti.com/support/microcontrollers/c2000/f/171/p/376984/1341965#1341965

希望这些思路对你有帮助,并且欢迎回来。

各位TI的大牛们,请解答一个问题!

     最近在用TI的Concerto系列F28M35H52C 做一个模拟信号采集的项目。在ADC方面遇到一些问题。不知是否方便予以解答。前两天在deyisupport上发过帖子,但没人回答,故现在想你求援。

     问题描述:在我的设计中,ADC1/ADC2采用overlap、依次顺序进行转换,各SOC0–SOC15均采用定时器TINT1的100us定时去触发,当SOC15转换完毕后去触发ADCINT1(ADC2的SOC15触发ADCINT2),ADCINT1/ADCINT2在PIE中不允许中断,通过查询中断标记位判断16个SOC转换是否完成。在程序中在各步加设GIO置1或0的方式,通过示波器观察各步的执行时间和状态,发现采用查询ADCINT1中断标记位时,从ADC启动(通过TINT1启动)到ADC1 的中断标记置位时的时间间隔只有惊人的0.8us这么短,那可是16个SOC的转换啊!根据TI的SPRUH22F中P900到的参数,应该是543ns X 16=8.5us左右,差距是10倍左右!而采用查询ADCCTL1.bit.ADCBSY和ADCCTL1.bit.ADCBSYCHN方式,测得到SOC15转换完毕的时间大约8us,还算靠谱! 通过设置断点,发现在中断标记为置位时,ADCBSY=1,且ADCBSYCHN=2,说明在SOC1转换完毕时,就触发了中断!但在初始化代码中,明明是设置的SOC15。

Adc1Regs.INTSEL1N2.bit.INT1SEL = 15;                         // setup ADC1 EOC15 to trigger ADCINT1

不知是什么原因。

我的问题就是:如何通过查询相关的ADCINT1中断标记位,判断16个SOC转换是否完成?

ADCINT1/ADCINT2和TINT1均允许中断,但在PIE中却不允许中断,通过查询方式进行判断。

以下是相关的程序代码,请帮忙看看是否有问题!谢谢! 

由于自己设计的硬件还在打样中。所以目前硬件用的还是Concerto F28M35xx controlCARD。软件是在\ti\controlSUITE\device_support\f28m36x\v206修改的。

 EALLOW;

Adc1Regs.ADCCTL1.bit.ADCBGPWD = 1;     // Power ADC1 BG, Bandgap circuit(带隙基准电路) 上电, 见TRM P911 ADCCTL1
Adc1Regs.ADCCTL1.bit.ADCREFPWD = 1;   // Power reference,Reference buffers circuit power down
Adc1Regs.ADCCTL1.bit.ADCPWDN = 1;       // Power ADC1, ADC power down
Adc1Regs.ADCCTL1.bit.ADCENABLE = 1;    // Enable ADC1
Adc1Regs.ADCCTL1.bit.ADCREFSEL = 0;    // Select interal BG, Internal/external reference select

Adc1Regs.ADCCTL2.bit.ADCNONOVERLAP = 0;             // 0–Enable overlap mode 
Adc1Regs.ADCCTL1.bit.INTPULSEPOS = 1;                   // ADCINT1 trips after AdcResults latch
Adc1Regs.INTSEL1N2.bit.INT1E = 1;                               // Enabled ADCINT1
Adc1Regs.INTSEL1N2.bit.INT1CONT = 0;                       // Disable ADCINT1 Continuous mode
Adc1Regs.INTSEL1N2.bit.INT1SEL = 15;                         // setup ADC1 EOC15 to trigger ADCINT1
Adc1Regs.SOCPRICTL.bit.SOCPRIORITY = 15;             // 15: SOC0-SOC14 are high priority, SOC15 is in round robin mode.

AnalogSysctrlRegs.TRIG1SEL.all     = 2;     // Assigning TINT1 (CPU Timer 1) to ADC TRIGGER 1 of the ADC1 and ADC2 module 

Adc1Regs.ADCSOC0CTL.bit.CHSEL = 0; // set SOC0 channel select to ADC1A0 
Adc1Regs.ADCSOC1CTL.bit.CHSEL = 8; // set SOC1 channel select to ADC1B0
Adc1Regs.ADCSOC2CTL.bit.CHSEL = 4; // set SOC2 channel select to ADC1A4
Adc1Regs.ADCSOC3CTL.bit.CHSEL = 12; // set SOC3 channel select to ADC1B4
Adc1Regs.ADCSOC4CTL.bit.CHSEL = 0; // set SOC4 channel select to ADC1A0
Adc1Regs.ADCSOC5CTL.bit.CHSEL = 8; // set SOC5 channel select to ADC1B0
Adc1Regs.ADCSOC6CTL.bit.CHSEL = 4; // set SOC6 channel select to ADC1A4
Adc1Regs.ADCSOC7CTL.bit.CHSEL = 12; // set SOC7 channel select to ADC1B4
Adc1Regs.ADCSOC8CTL.bit.CHSEL = 0; // set SOC8 channel select to ADC1A0
Adc1Regs.ADCSOC9CTL.bit.CHSEL = 8; // set SOC9 channel select to ADC1B0
Adc1Regs.ADCSOC10CTL.bit.CHSEL = 4; // set SOC10 channel select to ADC1A4
Adc1Regs.ADCSOC11CTL.bit.CHSEL = 12; // set SOC11 channel select to ADC1B4
Adc1Regs.ADCSOC12CTL.bit.CHSEL = 0; // set SOC12 channel select to ADC1A0
Adc1Regs.ADCSOC13CTL.bit.CHSEL = 8; // set SOC13 channel select to ADC1B0
Adc1Regs.ADCSOC14CTL.bit.CHSEL = 4; // set SOC14 channel select to ADC1A4
Adc1Regs.ADCSOC15CTL.bit.CHSEL = 12; // set SOC15 channel select to ADC1B4

Adc1Regs.ADCSOC0CTL.bit.TRIGSEL = 5; // Set SOC0 start trigger to ADC Trigger 1 of the ADC 
Adc1Regs.ADCSOC1CTL.bit.TRIGSEL = 5; // set SOC1 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC2CTL.bit.TRIGSEL = 5; // Set SOC2 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC3CTL.bit.TRIGSEL = 5; // set SOC3 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC4CTL.bit.TRIGSEL = 5; // Set SOC4 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC5CTL.bit.TRIGSEL = 5; // set SOC5 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC6CTL.bit.TRIGSEL = 5; // Set SOC6 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC7CTL.bit.TRIGSEL = 5; // set SOC7 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC8CTL.bit.TRIGSEL = 5; // Set SOC8 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC9CTL.bit.TRIGSEL = 5; // set SOC9 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC10CTL.bit.TRIGSEL = 5; // Set SOC10 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC11CTL.bit.TRIGSEL = 5; // set SOC11 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC12CTL.bit.TRIGSEL = 5; // Set SOC12 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC13CTL.bit.TRIGSEL = 5; // set SOC13 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC14CTL.bit.TRIGSEL = 5; // Set SOC14 start trigger to ADC Trigger 1 of the ADC
Adc1Regs.ADCSOC15CTL.bit.TRIGSEL = 5; // set SOC15 start trigger to ADC Trigger 1 of the ADC

Adc1Regs.ADCSOC0CTL.bit.ACQPS = 6; // set SOC0 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1) 
Adc1Regs.ADCSOC1CTL.bit.ACQPS = 6; // set SOC1 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC2CTL.bit.ACQPS = 6; // set SOC2 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC3CTL.bit.ACQPS = 6; // set SOC3 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC4CTL.bit.ACQPS = 6; // set SOC4 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC5CTL.bit.ACQPS = 6; // set SOC5 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC6CTL.bit.ACQPS = 6; // set SOC6 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC7CTL.bit.ACQPS = 6; // set SOC7 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC8CTL.bit.ACQPS = 6; // set SOC8 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC9CTL.bit.ACQPS = 6; // set SOC9 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC10CTL.bit.ACQPS = 6; // set SOC10 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC11CTL.bit.ACQPS = 6; // set SOC11 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC12CTL.bit.ACQPS = 6; // set SOC12 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC13CTL.bit.ACQPS = 6; // set SOC13 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC14CTL.bit.ACQPS = 6; // set SOC14 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
Adc1Regs.ADCSOC15CTL.bit.ACQPS = 6; // set SOC15 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)

EDIS;

while(CpuTimer1Regs.TCR.bit.TIF==0);                   //This flag gets set when the CPU-timer decrements to zero, 100us

CpuTimer1Regs.TCR.bit.TIF = 1;                             // Writing a 1 to this bit clears the flag

POINTPULSE_DAT_REG = 1;                                // GPIO31– point pulse, point sanmple strat

//while((Adc1Regs.ADCCTL1.bit.ADCBSY !=0) ||(Adc1Regs.ADCCTL1.bit.ADCBSYCHN != 0x0f));

                                                           // 判断BUSY是否空闲,且最后一个通道是否是SOC15

while(Adc1Regs.ADCINTFLG.bit.ADCINT1==0);                     // 等待ADCINT1信号产生(由SOC15转换完毕产生)
Adc1Regs.ADCINTFLGCLR.bit.ADCINT1 = 1;                        // 清除ADCINT1中断信号

POINTPULSE_DAT_REG = 0;                                                // high level width: 16 socs total time(include: Sample time + Conversion Time)

以上问题,希望各位大牛们解答!

10#:

回复 hong pu:

需要看看你的完整配置,或者是否可能有寄存器配置的override,你也可以单步调试,并且在CCS窗口里手动修改ADC相关寄存器看看问题在哪里。

赞(0)
未经允许不得转载:TI中文支持网 » 关于F28M35的ADC的中断问题?特别要请TI的工程师们作答!
分享到: 更多 (0)