单片机 TM4C123GXL,芯片GH6PM
CCS 版本6.0.1
编译过程无错误,但是烧进板子时,出现Error connecting to the target,之前也查询过相关问题,在网上找到过一例教程(http://blog.163.com/m4_maimang/blog/static/240793021201561963257180/),即下载LM Flash Programmer后unlock,按照该方法确实可用,但是仅仅能连接上一次,下次再想改程序时,重新编译运行还要再次重复上述过程,特别麻烦。原来板子是正常下载的,只是最近突然出现这样子的问题,因此想请教下有没有一劳永逸的办法可以杜绝这个连接错误的问题?
下附链接内容:
Maka Luo:
说明你代码使将JTAG锁定了,当然每次下载都需要重新解锁才能用,不然无法保障知识产权。
M4部分IO默认是锁定的,如果你需要使用,需要先解锁才能配置使用,在数据手册的GPIO那章节有详细说明。
GPIO和JTAG转换参考下面的代码例程:
//*****************************************************************************//// gpio_jtag.c – Example to demonstrate recovering the JTAG interface.//// Copyright (c) 2012-2015 Texas Instruments Incorporated. All rights reserved.// Software License Agreement// // Texas Instruments (TI) is supplying this software for use solely and// exclusively on TI's microcontroller products. The software is owned by// TI and/or its suppliers, and is protected under applicable copyright// laws. You may not combine this software with "viral" open-source// software in order to form a larger program.// // THIS SOFTWARE IS PROVIDED "AS IS" AND WITH ALL FAULTS.// NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT// NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL NOT, UNDER ANY// CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL// DAMAGES, FOR ANY REASON WHATSOEVER.// // This is part of revision 2.1.1.71 of the EK-TM4C123GXL Firmware Package.////*****************************************************************************
#include <stdint.h>#include <stdbool.h>#include "inc/hw_gpio.h"#include "inc/hw_ints.h"#include "inc/hw_memmap.h"#include "inc/hw_types.h"#include "driverlib/debug.h"#include "driverlib/fpu.h"#include "driverlib/gpio.h"#include "driverlib/interrupt.h"#include "driverlib/pin_map.h"#include "driverlib/rom.h"#include "driverlib/sysctl.h"#include "driverlib/systick.h"#include "driverlib/uart.h"#include "utils/uartstdio.h"#include "drivers/buttons.h"
//*****************************************************************************////! \addtogroup example_list//! <h1>GPIO JTAG Recovery (gpio_jtag)</h1>//!//! This example demonstrates changing the JTAG pins into GPIOs, aint32_t with a//! mechanism to revert them to JTAG pins. When first run, the pins remain in//! JTAG mode. Pressing the left button will toggle the pins between JTAG mode//! and GPIO mode. Because there is no debouncing of the push button (either//! in hardware or software), a button press will occasionally result in more//! than one mode change.//!//! In this example, four pins (PC0, PC1, PC2, and PC3) are switched.//!//! UART0, connected to the ICDI virtual COM port and running at 115,200,//! 8-N-1, is used to display messages from this application.////*****************************************************************************
//*****************************************************************************//// The current mode of pins PC0, PC1, PC2, and PC3. When zero, the pins// are in JTAG mode; when non-zero, the pins are in GPIO mode.////*****************************************************************************volatile uint32_t g_ui32Mode;
//*****************************************************************************//// The error routine that is called if the driver library encounters an error.////*****************************************************************************#ifdef DEBUGvoid__error__(char *pcFilename, uint32_t ui32Line){}#endif
//*****************************************************************************//// The interrupt handler for the PB4 pin interrupt. When triggered, this will// toggle the JTAG pins between JTAG and GPIO mode.////*****************************************************************************voidSysTickIntHandler(void){ uint8_t ui8Buttons; uint8_t ui8ButtonsChanged;
// // Grab the current, debounced state of the buttons. // ui8Buttons = ButtonsPoll(&ui8ButtonsChanged, 0);
// // If the left button has been pressed, and was previously not pressed, // start the process of changing the behavior of the JTAG pins. // if(BUTTON_PRESSED(LEFT_BUTTON, ui8Buttons, ui8ButtonsChanged)) { // // Toggle the pin mode. // g_ui32Mode ^= 1;
// // See if the pins should be in JTAG or GPIO mode. // if(g_ui32Mode == 0) { // // Change PC0-3 into hardware (i.e. JTAG) pins. // HWREG(GPIO_PORTC_BASE + GPIO_O_LOCK) = GPIO_LOCK_KEY; HWREG(GPIO_PORTC_BASE + GPIO_O_CR) = 0x01; HWREG(GPIO_PORTC_BASE + GPIO_O_AFSEL) |= 0x01; HWREG(GPIO_PORTC_BASE + GPIO_O_LOCK) = GPIO_LOCK_KEY; HWREG(GPIO_PORTC_BASE + GPIO_O_CR) = 0x02; HWREG(GPIO_PORTC_BASE + GPIO_O_AFSEL) |= 0x02; HWREG(GPIO_PORTC_BASE + GPIO_O_LOCK) = GPIO_LOCK_KEY; HWREG(GPIO_PORTC_BASE + GPIO_O_CR) = 0x04; HWREG(GPIO_PORTC_BASE + GPIO_O_AFSEL) |= 0x04; HWREG(GPIO_PORTC_BASE + GPIO_O_LOCK) = GPIO_LOCK_KEY; HWREG(GPIO_PORTC_BASE + GPIO_O_CR) = 0x08; HWREG(GPIO_PORTC_BASE + GPIO_O_AFSEL) |= 0x08; HWREG(GPIO_PORTC_BASE + GPIO_O_LOCK) = GPIO_LOCK_KEY; HWREG(GPIO_PORTC_BASE + GPIO_O_CR) = 0x00; HWREG(GPIO_PORTC_BASE + GPIO_O_LOCK) = 0;
// // Turn on the LED to indicate that the pins are in JTAG mode. // ROM_GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_3 | GPIO_PIN_1, GPIO_PIN_3); } else { // // Change PC0-3 into GPIO inputs. // HWREG(GPIO_PORTC_BASE + GPIO_O_LOCK) = GPIO_LOCK_KEY; HWREG(GPIO_PORTC_BASE + GPIO_O_CR) = 0x01; HWREG(GPIO_PORTC_BASE + GPIO_O_AFSEL) &= 0xfe; HWREG(GPIO_PORTC_BASE + GPIO_O_LOCK) = GPIO_LOCK_KEY; HWREG(GPIO_PORTC_BASE + GPIO_O_CR) = 0x02; HWREG(GPIO_PORTC_BASE + GPIO_O_AFSEL) &= 0xfd; HWREG(GPIO_PORTC_BASE + GPIO_O_LOCK) = GPIO_LOCK_KEY; HWREG(GPIO_PORTC_BASE + GPIO_O_CR) = 0x04; HWREG(GPIO_PORTC_BASE + GPIO_O_AFSEL) &= 0xfb; HWREG(GPIO_PORTC_BASE + GPIO_O_LOCK) = GPIO_LOCK_KEY; HWREG(GPIO_PORTC_BASE + GPIO_O_CR) = 0x08; HWREG(GPIO_PORTC_BASE + GPIO_O_AFSEL) &= 0xf7; HWREG(GPIO_PORTC_BASE + GPIO_O_LOCK) = GPIO_LOCK_KEY; HWREG(GPIO_PORTC_BASE + GPIO_O_CR) = 0x00; HWREG(GPIO_PORTC_BASE + GPIO_O_LOCK) = 0; ROM_GPIOPinTypeGPIOInput(GPIO_PORTC_BASE, (GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3));
// // Turn off the LED to indicate that the pins are in GPIO mode. // ROM_GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_3 | GPIO_PIN_1, GPIO_PIN_1); } }}
//*****************************************************************************//// Configure the UART and its pins. This must be called before UARTprintf().////*****************************************************************************voidConfigureUART(void){ // // Enable the GPIO Peripheral used by the UART. // ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
// // Enable UART0 // ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);
// // Configure GPIO Pins for UART mode. // ROM_GPIOPinConfigure(GPIO_PA0_U0RX); ROM_GPIOPinConfigure(GPIO_PA1_U0TX); ROM_GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);
// // Use the internal 16MHz oscillator as the UART clock source. // UARTClockSourceSet(UART0_BASE, UART_CLOCK_PIOSC);
// // Initialize the UART for console I/O. // UARTStdioConfig(0, 115200, 16000000);}
//*****************************************************************************//// Toggle the JTAG pins between JTAG and GPIO mode with a push button selecting// between the two.////*****************************************************************************intmain(void){ uint32_t ui32Mode;
// // Enable lazy stacking for interrupt handlers. This allows floating-point // instructions to be used within interrupt handlers, but at the expense of // extra stack usage. // ROM_FPULazyStackingEnable();
// // Set the clocking to run directly from the crystal. // ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_XTAL_16MHZ | SYSCTL_OSC_MAIN);
// // Enable the peripherals used by this application. // ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA); ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOC);
// // Initialize the button driver. // ButtonsInit();
// // Set up a SysTick Interrupt to handle polling and debouncing for our // buttons. // SysTickPeriodSet(SysCtlClockGet() / 100); SysTickIntEnable(); SysTickEnable();
IntMasterEnable();
// // Configure the LED as an output and turn it on. // ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_3 | GPIO_PIN_1); ROM_GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_3 | GPIO_PIN_1, GPIO_PIN_3);
// // Set the global and local indicator of pin mode to zero, meaning JTAG. // g_ui32Mode = 0; ui32Mode = 0;
// // Initialize the UART. // ConfigureUART();
UARTprintf("\033[2JGPIO <-> JTAG\n");
// // Indicate that the pins start out as JTAG. // UARTprintf("Pins are JTAG\n");
// // Loop forever. This loop simply exists to display on the UART the // current state of PC0-3; the handling of changing the JTAG pins to and // from GPIO mode is done in GPIO Interrupt Handler. // while(1) { // // Wait until the pin mode changes. // while(g_ui32Mode == ui32Mode) { }
// // Save the new mode locally so that a subsequent pin mode change can // be detected. // ui32Mode = g_ui32Mode;
// // See what the new pin mode was changed to. // if(ui32Mode == 0) { // // Indicate that PC0-3 are currently JTAG pins. // UARTprintf("Pins are JTAG\n"); } else { // // Indicate that PC0-3 are currently GPIO pins. // UARTprintf("Pins are GPIO\n"); } }}
qifan gao:
回复 Maka Luo:
Maka:
您好,
谢谢您的回复。
我查询data sheet 时也注意到了这个锁定问题,但是并没有很理解。
令我疑惑的是我只是在一个小程序里利用了PWM使用PB4、PB5、PB6、PB7输出,之前有好多次修改debug是没有问题的,但是同样的程序在某一次就突然锁定了,接下来每次就要去解锁。
还有请问我需要怎么做才能避免每次锁定的问题?
谢谢!
Maka Luo:
回复 qifan gao:
JTAG和PC口才是复用的,PB口与其无关,你的代码中是否有对PC口进行操作?如果没有PC配置,那么你这种情况就不确定是什么原因导致的。
烧一个我们简单的例程进去,看看是不是会锁定?
GPIO默认说明在数据手册中有详细说明。
qifan gao:
回复 Maka Luo:
Maka:
谢谢您的耐心解答。
解锁后烧进简单的程序不再锁定,但是我的程序(附件内)里确实没有对PC口操作的,这到底是为什么呢?
谢谢
qifan gao:
回复 Maka Luo:
Maka:
您好!
谢谢您的耐心的解答。
烧进简单程序没有再被锁定,但我的程序(下附)里确实没有对PC口操作的,这是为什么呢?
谢谢
/*利用PWMO,PWM1产生200HZ和400Hz 50%占空比的方波*/#include <stdint.h>#include <stdbool.h>#include "inc/hw_memmap.h"#include "inc/hw_types.h"#include "driverlib/sysctl.h"#include "driverlib/rom.h"#include "driverlib/gpio.h"#include "driverlib/pwm.h"#include "driverlib/fpu.h"#include "driverlib/pin_map.h"
int main (void){ //使能FPU FPUEnable(); FPULazyStackingEnable(); //设置系统时钟为16MHz SysCtlClockSet(SYSCTL_SYSDIV_64|SYSCTL_USE_OSC|SYSCTL_OSC_MAIN |SYSCTL_XTAL_16MHZ); //使能PWM0模块,使能PWM0和PWM1输出所在GPIO SysCtlPeripheralEnable(SYSCTL_PERIPH_PWM0); SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB); GPIOPinTypePWM(GPIO_PORTB_BASE, GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7); GPIOPinConfigure(GPIO_PB6_M0PWM0); GPIOPinConfigure(GPIO_PB7_M0PWM1); GPIOPinConfigure(GPIO_PB4_M0PWM2); GPIOPinConfigure(GPIO_PB5_M0PWM3);
//驱动电流8MA,推挽输出 GPIOPadConfigSet(GPIO_PORTB_BASE,GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7, GPIO_STRENGTH_8MA,GPIO_PIN_TYPE_STD);
// PWM时钟配置 SysCtlPWMClockSet(SYSCTL_PWMDIV_1);// SysCtlPWMClockSet(SYSCTL_PWMDIV_32); //配置PWM发生器0:加减计数,不同步 PWMGenConfigure(PWM0_BASE,PWM_GEN_0,PWM_GEN_MODE_UP_DOWN| PWM_GEN_MODE_NO_SYNC); PWMGenConfigure(PWM0_BASE,PWM_GEN_1,PWM_GEN_MODE_UP_DOWN| PWM_GEN_MODE_NO_SYNC); //设置PWM发生器0的频率,时钟频率/PWM分频数/n,16M/64/1250=200HZ PWMGenPeriodSet(PWM0_BASE, PWM_GEN_0, 1250); //设置PWM发生器1的频率,时钟频率/PWM分频数/n,16M/16/625=400HZ PWMGenPeriodSet(PWM0_BASE, PWM_GEN_1, 625); //设置PWM0/PWM1输出的脉冲宽度 PWMPulseWidthSet(PWM0_BASE, PWM_OUT_0,1250/2); PWMPulseWidthSet(PWM0_BASE, PWM_OUT_1,1250/2); PWMPulseWidthSet(PWM0_BASE, PWM_OUT_2,625/2); PWMPulseWidthSet(PWM0_BASE, PWM_OUT_3,625/2);
//使能PWM0和PWM1的输出 PWMOutputState(PWM0_BASE, (PWM_OUT_0_BIT |PWM_OUT_1_BIT| PWM_OUT_2_BIT| PWM_OUT_3_BIT), true); //使能PWM发生器 PWMGenEnable(PWM0_BASE, PWM_GEN_0); PWMGenEnable(PWM0_BASE, PWM_GEN_1);
while(1) {
}
}
Maka Luo:
回复 qifan gao:
从程序代码来看,没有什么问题。
仿真过程中是否有同样的问题?
qifan gao:
回复 Maka Luo:
有的,也是这样
Maka Luo:
回复 qifan gao:
那PWM工作正常?
这有点奇怪,建议换个硬件看看。
Maka Luo:
回复 Maka Luo:
测试一下这个例程,看看JTAG是否正常。
TI中文支持网

