I3 TEXAS
INSTRUMENTS

User's Guide
SPRUIR8A-September 2019—Revised April 2020

CLB Tool

This user's guide describes the structure and use of the Configurable Logic Block (CLB) tool. Information
on the architecture of the CLB may be found in the device-specific technical reference manual (TRM).

It is assumed that the reader is already familiar with the architecture of the CLB and with the CCS IDE.
For detailed information on the CLB, see the device-specific TRM.

Contents
1)0 1T 1T o 2
2 [T 0 RS =T (=0 4
3 L LS T T £ TS O I T 1o o] 7
4 LI L I 30110 = o 13
5 = 10 0] S 15
6 Enabling CLB Tool In EXiSting DriverLib ProjECIS e reiiiieiisiieesasineesasinnessaannesssanneessannnesssannnerens 31
7 Frequently Asked QUESHIONS (FAQS) . uvuuuutiuttineiitertsiaeesaarsantstanssaatssasstaisssanssansssassssnnssannsnns 35
List of Figures
1 (4 I 2 B oo I = (0] =T ot) 1 (1o (1] = 3
2 (O B o Yo I =01 o I o {00 4
3 TDM Compiler INStallation WiZardve v s r s s s e raaeaas 5
4 TDM Compiler INStallation B4-Dit.uiiee e r e s rr s s s s iane s saanaa s s aanrassannns 5
5 QLI 1 @0 g1 1] 1 o 6
6 IMPOIt CCS EClPSE PrOJECES . uuieiiistiitiit st s e e s e s s s e s s s ar e s e aan e sanns 7
7 T =T I TS T | o= 8
8 (OF I = 3 o o] IS} 2] @40 1) o [Tox (=11 o PSP 9
9 2710 T gTo F=T 2 [T 1010 ' 4o T 10
10 (00 1 (= 0@ o] (o] o 1= S 10
11 =10 U =110 Y= g 11T 11
12 (I8 = R o To I 1= g 1T 1= N 1 11
13 “Clb.h” Header File EXAMPIEttt et e st s s s e e s s e e s s s s s saan e s s annnenss 12
14 HLC Configuration EXAMPIE .. .uueiteiiiiiieiite e iatss st ss e s st s saas et e s s s sasssaassannssaasaannennns 13
15 L5150 o0 L 13
16 Boundary INPUL INO 10 INT7 . n et r e r e e s s e st s s e s sr s e st s an s e s s st s ssannssaannesannns 14
17 BouNndary INPUL SQUAE WaVEueiieeiiieieiirtsiastsats s sssssaasssaassaasssasssassssaassansssnsssansssnnssnns 14
18 127010 gTo F=T Y2 [T 101 A O U (] o 14
19 (OF I 2 IS 0 T8 oo g T 0= T3] o] = 15
20 Example 9: EPWM SyNCRrONiZation ...u..eeiesiieeii st iieisisssisssassaasssaessasssssssansssasssansssnnssnns 17
21 Example 10: PWM TeSt PatlerN .. .ueueieeistssseiseisse s sssssssssassssssassssisssanrssasssanessnnssans 17
22 [T aT 0] (I o o o (ol I T T = oo S 18
23 Example 1: Generated PWMuoiieiiiiiiiiiiiite ittt ss s st s s e s st ss it s s s s s s s sann s sasssannasnnanns 19
24 Example 1: CLB CONfIGUIALION +.uuteueeiieesstsssseisesstessasssssss s ssaes s sase s s sss s sanssasssaneannnesans 20
25 Example 2: GPIO GlItCh EXAMPIE.uieiiieteiiiitteri it rr e s s e s s a s e s sraasn st saan e s saann e s saannnenannn 21
26 Example 2: CLB CONfIQUIALION .. uteiiseieesetsstsisssatssasssssssas s ssasssaassanesanssssssanssansssansssnnssnns 22
27 Example 2: GPIO GItCh WIdth ... s s s r e anaes 23
SPRUIR8A-September 2019—-Revised April 2020 CLB Tool 1

Submit Documentation Feedback
Copyright © 2019-2020, Texas Instruments Incorporated

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A

13 TEXAS

INSTRUMENTS

Introduction www.ti.com
28 Example 3: Generated PWM WaVvefOorm ... i e s s s s e s s s snn e sannans 24
29 Example 5: Event WINdow COoNfIQUIAtioNeeuieeeeiiit it ir it e s s iane s ans s ssnnns s snnnnn s saannnennn 26
30 Example 6: Duty Exceeding Pre-Set ValUeuvieeiiiiiieiiiii i rn s s nian s s aninn e s aans 28
31 Example 6: Period Exceeding Pre-Set Valuecivuiiiiiiiiiiii i i s saanenee s 28
32 TS T 11 [P 29
33 Example 17: Overall CLB CONfIQUIALION «.uuuuuesiiiieeeisiiase s st ssasse s saste s ssaanssssanrsssaannsssaannresnnns 30
34 ENADIE SYSCONTIG 1 euuutiitiiitiiie i e e 31
35 015 e 01U 1[0] (=1 oL 32
36 ST O 0] 01T ST I G 1 33
37 epwm_ex1_trip_zone With CLB TOOI SUPPOIT. .. uuuueeratirnteiseiaeeraneisessisssansssanssars s rannssanssanns 34

List of Tables

1 T8 o] oo (=To I IoTo o= 1@ 1 =T - o o 11
2 ez L] o] LI @ =T o 1o 1Y oo L= 17
3 Example 4: Signal CONMNECHIONSuuuueeeiiiiieetraaetessaate e ssaaa s e s s s e s saanns s aaannessaannnsssaannassaannnesinn 25

Trademarks

1.1

1.2

C2000, Code Composer Studio are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

Introduction

CLB Tool Qutline

The CLB is a hardware module integrated into certain C2000™ devices. The CLB contains a set of
configurable blocks and inter-connections which allows users to create their own custom digital logic along
the lines of what could be done with a FPGA. For example, the CLB might be configured to enhance the
functionality of existing device peripherals, or to create new peripheral functions. The CLB is configured
using a software utility, referred to here as the “CLB tool”.

The CLB tool allows the user to configure and connect sub-modules in each CLB tile.

The tool makes use of the “SysConfig” graphical user interface (GUI) which is part of Code Composer
Studio™ (CCS). The tool includes a small number of examples intended to help the user explore the
features of the tool and to create their own projects.

The tool generates a C header file containing a set of constants corresponding to the configuration
settings defined by the user in the GUI. The tool also generates a C source file which uses the constants
in the C header file to initialize the CLB modules by loading the constants into the CLB registers by a
sequence of register load operations. The functions in the C source file must be called during the device
initialization. The tool does not configure the input and output connections between the CLB tile and other
device peripherals, including the cross-bars and other CLB tiles. The configuration of these registers must
be done separately and is the responsibility of the user.

Overview of the CLB Configuration Process

The CLB tool is based on the “SysConfig” tool in CCS. This, together with files supplied as part of the
C2000Ware download, is sufficient to configure the CLB. In order to conduct a simulation of the design it
is necessary to install a number of third party tools, including a compiler and a wave viewer. For more
information on the CLB simulator, see Section 4.

The CLB tool generates a “.dot” file which shows sub-module inter-connections in diagram form and can
be used to verify the design. This file is converted to HTML format in CCS post-build steps using node.js
and JavaScript libraries in the provided examples. The tool also generates a “clb_sim.cpp” file. The CPP
file, along with other CLB simulation models, is compiled using a GCC compiler. The output of the
compilation is an “.exe” file, which must be executed on the local machine in order to generate a “.vcd”
file. This “.vcd” file can be used to conduct a timing analysis using an external graph viewer. All these
steps are automatically done using post-build steps of CCS.

CLB Tool SPRUIR8A-September 2019—-Revised April 2020

Submit Documentation Feedback
Copyright © 2019-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A

13 TEXAS
INSTRUMENTS

www.ti.com Introduction

The CLB configuration is encoded in the generated C header file “clb_config.h”. The “clb_config.c” file
generated by the CLB tool uses the generated header file to load the configuration in to the CLB module’s
registers. It is important to note that in the application code for the C28x device, the functions in the
“clb_config.c” file must be called during the device initialization steps. Figure 1 shows the output of the
CLB tool and the post-build steps.

Generated Files from CLB Tool (SysConfig)

C28x Application Code CLB Tool (SysConfig)
* Main.c « Configured through .syscfg file inside the project
Driverlib.lib » Graphical User Interface to configure the CLB Tiles

Other application specific files
CLB SysConfig tool files
clb_config.c

clb_config.h

Generate

Generated Files from CLB Tool (SysConfig)

clb_config.h

clb_sim.cpp clb.dot

Application Simulation Visualization
Code Code Diagram

Figure 1. CLB Tool Project Structure

In a typical scenario, the user begins with a specification of the desired CLB logical functionality. This may
be in the form of a logic circuit diagram, timing information, written description, VHDL code, or some other
form. Having installed the requisite tools, the first step will be to connect the tile sub-modules to implement
the desired logic.

The specification may include a set of timing diagrams in which case the user may (optionally) decide to
conduct a simulation of the CLB configuration to ensure behavior is as expected. This step includes
defining a set of input test stimuli, and building a simulation project to generate simulation waveforms
which can be opened in a graph viewer. If the results are not as expected, the user will modify the
SysConfig settings and repeat the simulation.

Once correct waveforms are obtained from the simulation, the user can then download the design into the
device in the normal way.

In a CLB SysConfig enabled CCS project for a C28x device, the steps to create the HTML block diagram
of the CLB Tile configuration and the generation of the “.vcd” simulation waves are automated. When the
user builds the CCS project, the user application code, along with the generated “clb_config.h” and
“clb_config.c”, are compiler using the C28x compilers and a “.out” file is generated. Post-build steps
compile the generated simulation files, “clb_sim.cpp” and “clb_config.h”, along with the CLB simulation
modes, using a GCC compiler. The output of this step is a “.exe” file (“simulation_output.exe”). Next in the
post-build steps, the “.exe” file is executed and “CLB.vcd” is generated. This file can be viewed using an
external graph viewer.

SPRUIRBA—September 2019—Revised April 2020 CLB Tool 3

Submit Documentation Feedback
Copyright © 2019-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A

13 TEXAS
INSTRUMENTS

Getting Started www.ti.com

STEP 1
SysConfig Generates Files
PROJECT_LOC\Debug\syscfg

STEP 2
Generate Application “.OUT”
PROJECT_LOC\Debug

STEP 3
Generate Simulation “.EXE”
PROJECT_LOC\Debug\simulation

Generated Files from CLB Tool (SysConfig)

Load the “.OUT” into
the C28x targer device
STEP 4
Execute Simulation “.EXE”

Generate CLB.vcd
PROJECT_LOC\Debug\simulation

Use an external wave
viewer for simulation
results

clb_sim.cpp clb.dot
View the CLB design block
diagram using an HTML viewer
(In CCS, double click the clb.html)

STEP 5
Convert clb.dot to clb.html
PROJECT_LOC\Debug\syscfg

Application Simulation Visualization
Code Code Diagram

Figure 2. CLB Tool Build Process

2 Getting Started
This section is intended to help new users to get started quickly with the CLB tool.

2.1 Introduction
In order to use the tool, Code Composer Studio (CCS) version 9.0 or later must be installed. Earlier
versions of CCS do not contain the SysConfig utility, which is required for CLB configuration. For further
information and to download “Code Composer Studio”, visit: http://www.ti.com/tool/ccstudio-c2000.
The above tools allow the user to configure the CLB. However, in order to simulate the design the
following additional external (non-TI) tools must be installed:
* A GNU compiler (TDM-GCC)
» A simulation viewer (GTK Wave)

4

CLB Tool SPRUIR8A-September 2019—-Revised April 2020

Submit Documentation Feedback
Copyright © 2019-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A
http://www.ti.com/tool/ccstudio-c2000

I

TEXAS
INSTRUMENTS

www.ti.com

Getting Started

2.2

221

Installation

GNU Compiler

1. Download “tdm-gcc” from the following link: https://sourceforge.net/projects/tdm-gcc/files/TDM-
GCC%20Installer/tdm64-gcc-5.1.0-2.exe/download.

2. Open the downloaded file to install the compiler.
3. Uncheck the "Check for updated files on the TDM-GCC server" checkbox.

4. Select “Create”

from the setup wizard.

td TOM-GCC Setup -

Wizard Action
Choose which action you want the setup wizard to perform,

Previous Installations

Create
: Create a new TDM-GCC installation

C:\TDM-GCC-64

: Manage an existing TDM-GCC installation

Remove

: Remove a TDM-GCC installation

Check for updated files on the TDM-GCC server

Cancel

Figure 3. TDM Compiler Installation Wizard

5. Select the 64-bit installation and click “Next”.

td TDM-GCC Setup -

Select Edition
Chioose which edition of TDM-GCC you want to install.

) MinGW/TDM (32-bit)
Create a MinGW-based installation

® MinGW-w64/TDM64 (32-bit and 64-bit)
Create a MinGW-wa4-based installation

Cancel

Figure 4. TDM Compiler Installation 64-bit

SPRUIR8A-September 2019—-Revised April 2020
Submit Documentation Feedback

Copyright © 2019-2020, Texas Instruments Incorporated

CLB Tool

5

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A
https://sourceforge.net/projects/tdm-gcc/files/TDM-GCC%20Installer/tdm64-gcc-5.1.0-2.exe/download
https://sourceforge.net/projects/tdm-gcc/files/TDM-GCC%20Installer/tdm64-gcc-5.1.0-2.exe/download

13 TEXAS
INSTRUMENTS

Getting Started www.ti.com

6. Select the installation directory as C:\TDM-GCC-64 and click “Next”.

td TDM-GCC Setup — X

New Installation: Installation Directory
Choose the installation directory to use.

Setup will install TDM-GCC in the following folder. To install in a different folder, dick Browse
and select another folder. Click Next to continue.

Installation Directory

| O Browse...

Space available: 312, 5GB

Figure 5. TDM Compiler Path

7. Complete the remaining steps in the installation procedure according to your geographical location.

2.2.2 Install the Simulation Viewer
1. Download the waveform viewer GTKwave from this link: https://sourceforge.net/projects/gtkwavef/files/.

2. Download the native binaries for the correct Windows installation, (for example, for 64-bit Windows,
select “gtkwave-3.3.100-bin-win64”), and extract the downloaded zip file into the directory c:\gtkwave.

6 CLB Tool SPRUIR8A-September 2019—-Revised April 2020

Submit Documentation Feedback
Copyright © 2019-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A
https://sourceforge.net/projects/gtkwave/files/

i3 TEXAS
INSTRUMENTS

www.ti.com

Using the CLB Tool

3 Using the CLB Tool

This section describes how to use the CLB tool to configure a CLB tile. The CLB tool
version 9.0 or newer.

3.1 Import The Empty CLB Project

Driverlib based, CLB enabled example projects are available in
<C2000WARE_INSTALL>/driverlib/<device>/examples.

For example the F2837xD devices, the path to the empty CLB project (along with oth
projects) is <C2000WARE_INSTALL>/driverlib/f2837xd/examples/cpul/clb.

I o

requires CCS

er CLB example

Select a directory to search for existing CCS Eclipse projects.

@) Select search-directory: CAtNC2000Ware_1_00_06_00_Software\driverlib\f2837xd\examples\cpuliclb

") Select archive file:

Discovered projects:
[EalE t:r clb _empty < \tl\C2DDOWare 1 00_06_00 Soﬂware\drlve!llb\ﬁ837xd\examples\cpul\clb\CCS\clb _empty. pmjec -
O clb _ex10_timer_two_states | g \C
LI = clb_ex11_interrupt_tag [C

| & clb_ex12_output_intersect [

= clb_ex14_multi_tile [C
& clb_ex3_auxiliary_pwm
& clb_ex7 _state_machine [C\t

= clh exf external siaonal AND aate [C4H\C
1

Automatically import referenced projects found in same search-directory

Copy projects into workspace

Open Resource Explorer to browse a wide selection of example projects...

= Refresh ‘

In the CCS menu, click ‘Project -> Import CCS Projects...’

Enter the path to the CLB example projects in the ‘Select search-directory’.

Click ‘Refresh’.

Select the ‘clb_empty’ project.

Check ‘Copy projects into workspace’.

Click Finish.

+'+ Import CCS Eclipse Projects e

Select CCS Projects to Import -__’1
=~

Browse...

Select All
Deselect All

Finish

]|

Cancel

Figure 6. Import CCS Eclipse Projects

SPRUIR8A-September 2019—-Revised April 2020

Submit Documentation Feedback
Copyright © 2019-2020, Texas Instruments Incorporated

CLB Tool

7

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A

13 TEXAS
INSTRUMENTS

Using the CLB Tool www.ti.com

3.2

Updating Variable Paths

The empty CLB project imported above has the capability to not only generate the “.OUT” file for the C28x
target, but also has the capability to generate the simulation files and the HTML block diagram of the
design.

The path to the GCC compiler downloaded above may be different than the one specified in the project.
To double check this:

1. Right click on the project and select ‘Project Properties’.

2. Under ‘Resources’, select ‘Linked Resources’.

3. Check to make sure all the paths below are correct:
a. CLB_SYSCFG_ROOT (All CLB components are relative to this path)
b. CLB_SIM_COMPILER (Important for simulation)
c. SYSTEMC_INSTALL (Important for simulation)

+« Properties for clb_empty
type filter text Linked Resources
4 Resource
P Path Variables |Lmked Resources|
Resource Filters Path variables specify locations in the file system, including other path variables with the syntax "${VAR}".
General The locations of linked resources may be specified relative to these path variables.
4 Build Defined path variables for resource 'clb_empty"
System Configuration Too Name Value
> C2000 Compiler £ C2000WARE_DEVICESUPPORT_ROOT ${COM_TL_C2000WARE_SOFTWARE_PACKAGE _INSTALL_DIR}\device_support\f2837xd
O ke £ C2000WARE_DLIB_ROOT ${COM_TIC2000WARE_SOFTWARE_PACKAGE_INSTALL_DIRMdriverlit\f2837xd\driverlib
2000 Hex Utility [Disabl | || ¢ c3500wARE_ROOT ${COM_TLC2000WARE_SOFTWARE_PACKAGE INSTALL_DIR}
Debug 5 CCS_BASE ROOT CAti\ccs900\ces\ces_base
PrejEc Nates £CCS_INSTALL_ROOT CAti\ccs900\ces
& CG_TOOL_ ROOT CAti\ccs900\ccs\tools\compiler\ti-cgt-c2000_18.12.1.LTS
£ CL8_SIM_COMPILER CATDM-GCC-64\bin
& CLB_SYSCFG_ROOT ${COM_TL.C2000WARE_SOFTWARE_PACKAGE_INSTALL_DIR}utilities\clb_tooclb_syscfg
£ COM_TLC2000WARE_SOFTWARE_PACKAGE_INSTAL.. CAt\C2000Ware_1_00_06_00_Software
& ECLIPSE_HOME Ci\ti\ces900\ces\eclipse\
EPARENT_LOC C\Users\a0225962\workspace_v9_clb
EPROJECT_LOC C\Users\a0225962\workspace_v9_clb\clb_empty
5 SYSTEMC_INSTALL ${COM_TI C2000WARE_SOFTWARE PACKAGE INSTALL DIRNutilities\clb_tool\clb_syscig\systemc-2.3.3

Figure 7. Linked Resources

4. If the icon to the left of the name is not a folder, and is instead an exclamation point, the path does not
exist on your system and you must manually select the correct one.

8

CLB Tool SPRUIR8A-September 2019—-Revised April 2020

Submit Documentation Feedback
Copyright © 2019-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A

13 TEXAS
INSTRUMENTS

www.ti.com Using the CLB Tool
3.3 Configuring a CLB Tile

To open the configuration tool, double-click on the “.syscfg” file you want to edit in the CCS Project
Explorer window. A screen like that is shown in Figure 8.

CONFIGURATION 0 F= O

[<]
Q
)
LD

)

e

Figure 8. CLB Tool SysConfig Screen

If this screen does not open, be sure you have correctly completed the steps before this.

The configuration of CLB tiles are contained in each .syscfg file. You can change the name of the tile if
desired. Multiple .syscfg files can be added to the same project.

For the highlighted tile a list of sub-modules is shown in the pane to the right. The parameters of each
sub-system can be inspected and edited by clicking on the word “Show” to the right of its name.

SPRUIRBA—September 2019—Revised April 2020 CLB Tool 9
Submit Documentation Feedback
Copyright © 2019-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A

13 TEXAS
INSTRUMENTS

Using the CLB Tool www.ti.com

The “BOUNDARY” item is a special case. This group allows the user to select the tile inputs for simulation
only. When the tool configuration is generated the CLB inputs always come from global and local mux
modules as described in the TRM, however for the purposes of simulation the user can specify a square
wave signal source, together with a period and duty cycle (both in clock cycles), and sync conditions as
shown in Figure 9. Custom waveform generation for simulation purposes is also supported. For more
information on the simulator, see Section 4. These options are only for simulation and do not affect the
actual CLB configuration.

@ TiLEr e

Mame TILE1

> BOUNDARY(hide)

in0 ﬂ squareWave -
in_edged none -
in_sync0 D

in_period0 4

in_duty0 m 1 >
in1 None -
in2 MNone -
in3 None -

Figure 9. Boundary Input Options

The user configures and connects sub-modules in each tile using the check-boxes and drop-down options
in the tool. Context sensitive help appears when the mouse cursor is hovered over each item in the
configuration tool. Figure 10 shows an example for the matchl_val field in the COUNTER_0 sub-module.

> COUNTER_O(hide) (%
reset
event

maoded

model

e G| Bl Sets the value of the Match reference 1 register.

match2_val

eveni_load_val

Figure 10. Counter Options

10 CLB Tool SPRUIR8A-September 2019—-Revised April 2020

Submit Documentation Feedback
Copyright © 2019-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A

13 TEXAS
INSTRUMENTS

www.ti.com Using the CLB Tool

Logical equations for the LUTs and FSMs are configured by text entry using C format. Table 1 shows the
symbols that are allowed in a Boolean equation.

Table 1. Supported Logical Operations

Logical Operation Symbol
AND &
OR |
XOR e
NOT !

The use of parentheses is supported: for example, one could write: i1 | 1(i2 & i3). The tool performs syntax
checking on the equations as they are entered. Invalid equations are indicated as they appear by an error
message below the entry line.

Some unlikely logical combinations generate a warning to the user. Figure 11 shows an example in which
the user has attempted to use the i2 input in LUT_O in a Boolean equation. However, i2 is configured to
be a constant, which is unlikely to be what the user intended. The warning appears both below the
equation and below the input selection.

> LUT_0(hide)

0li1li2

eqn
Equation uses & constant valus inpu

FSM_0.50 -
1 FSM_1.81 -
0 -

Equation us:

BOUNDARY.in1 -

Figure 11. Equation Warning

For some fields the tool performs range checking on numerical entries to ensure they lie within the
allowable range. For example, an attempt to load a counter sub-module with a value greater than 22 will
produce a warning.

The tool automatically generates number of files as the user enters configuration data. To view the
generated files, click on the "<>" symbol in the upper right corner of the tool. Double-click on the filename

to open it.
<> Generated Files v
Category filter: all -
cLs hd
} cLs ¥
i I CLB i
3 Total Files hd
Figure 12. CLB Tool Generated Files
SPRUIR8A-September 2019—-Revised April 2020 CLB Tool 11

Submit Documentation Feedback
Copyright © 2019-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A

Using the CLB Tool

13 TEXAS
INSTRUMENTS

www.ti.com

CLB configuration register settings are contained in the header file “clb_config.h”, which can be opened
and inspected by the user by clicking the filename. An example is shown in Figure 13. It is important to
understand that this file is updated by the tool each time the user changes any CLB settings. Therefore,
users should not make any manual changes to the contents of file as these will be over-written by the tool.
If the file is kept open while changing CLB settings, the user may observe the affected register data

changing in the file.

support (++ s0urces

r Field definition

oxe0
exel
ex@2
2x23
oxos
exes
@x06
ox07

[4=

clb_config.h

1+ /=

2

3

4

5 = ef ti_clb_h

6 = e ti_clb_h

7

8 #include <stdint.h>

9
1e cplusplus

11~ " {

12

13

14 HLC Instruction Registe
15 e HLC_OPCODE_R® @x@
16 HLC_OPCODE_R1 @x1
17 e HLC_OPCODE_R2 @x2
18 HLC_OPCODE_R3 ©x3
19 e HLC_OPCODE_C@ ©x4
20 HLC_OPCODE_C1 ex5
21 e HLC_OPCODE_C2 @xé
22
23 e HLC_OPCODE_MOV
24 HLC_OPCODE_MOV_T1
25 e HLC_OPCODE_MOV_T2
26 HLC_OPCODE_PUSH
27 e HLC_OPCODE_PULL
28 HLC_OPCODE_ADD
29 e HLC_OPCODE_SUB
3e HLC_OPCODE_INTR

31
32

33
34

35 e TILE1_CFG_OUTLUT_@
36 TILE1_CFG_OUTLUT_1
37 e TILE1_CFG_OUTLUT_2
38 TILE1_CFG_OUTLUT_3
39 e TILE1_CFG_OUTLUT_4
40 TILE1_CFG_OUTLUT_S
41 TILE1_CFG_OUTLUT_6
42 TILE1_CFG_OUTLUT_7
43
a4 e TILE1_CFG_LUT4_INe
45 TTIEY FEA 1IITA T

ex7702¢7
exe
ex7702cf
exe
@x770257
exe
exe
exe

@x60ad

OvEARA

Figure 13. “clb.h” Header File Example

12

CLB Tool

SPRUIR8A-September 2019—-Revised April 2020

Copyright © 2019-2020, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A

13 TEXAS
INSTRUMENTS

www.ti.com The CLB Simulator

Fields for the HLC sub-module include those for configuring the events and initial values. Each of the four
events can trigger execution of a short program consisting of up to eight instructions. For more information
on HLC, see the device-specific TRM.

When a valid event trigger is selected, the tool displays lines where the user can type HLC instructions.
One blank line is always shown until all eight instructions have been used. In Figure 14, the user has
selected one HLC trigger events and typed in a short program consisting of three instructions.

> HLC(hide)&
Event 0 (e0) BOUNDARY.in5 -
Event 1 (e1) m 0 -~
Event 2 (e2 0 -
Event 3 (e3) 0 -
RO_ini 0
R1_ini 0
R2_init 0
R3_init 0

>> program0(hide)&

instruct0 intr 32
instruct mov ¢0, r0
instruct2 intr 0x14
instruct3

Figure 14. HLC Configuration Example

The file “clb.dot” allows the user to inspect a visual representation of the inter-connection of sub-modules.
An HTML version of this block diagram is generated in the post-build steps which can be opened and
viewed inside CCS.

4 The CLB Simulator
4.1 Using the Simulator

411 The Statics Panel

The top panel in the configuration tool contains three “static” settings used in simulation. Hold the mouse
over each field to see a short description.

> Statics(hide) @

clock_period 20
sim_duration 50000
reset_duration 40

Figure 15. Static Options

The “clock_period” is the period of the CLB clock in nano-seconds for simulation purposes. The
“sim_duration” field allows users to control the duration of the simulation run, again in nano-seconds. The
“reset_duration” field allows the user to insert a delay (in nano-seconds) before the simulation becomes
active to mimic the effect of a device reset.

SPRUIR8A-September 2019—-Revised April 2020 CLB Tool 13

Submit Documentation Feedback
Copyright © 2019-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A

13 TEXAS
INSTRUMENTS

The CLB Simulator www.ti.com

41.2 Creating the Input Stimulus

Open the .syscfg file by double-clicking on the file name in the CCS Project Explorer Window. Expand the
“Boundary” category by clicking on “Show”.

Type Filter Text.
. Configurable Logic Block (CLB) More.
= CONFIGURABLE LOGIC BLOCK (1)

I TILE @ > Statics(show) @
Name M
> BOUNDARY/(hide)&
o None ¥
i None =
i None
3 None b
ina None
- None =
i None -

in7 None

> LUT_0(show)@

Figure 16. Boundary Input INO to IN7

A separate input stimulus can be defined for each of the eight CLB inputs using the drop-down menus.
Click on the down-arrow on the right to reveal the options:

* None - the default option, does not generate any stimulus.
» squareWave — allows the user to define a periodic PWM input with configurable duty and phase.

>BOUNDARY(hide)@

in0 m squareWave =
in_edgel none -
in_synco D

in_period0 10

in_duty0 5

in1 None

Figure 17. Boundary Input Square Wave

The “in-edge” option offers the user the choice of generating a pulse from the rising and/or falling
edges of the PWM wave whose period and duty are set as 10 and 5 CLB clock pulses, respectively, in
Figure 17. The “in_sync” check-box forces the input waveform to be synchronized to the CLB clock.
For more information, see the CLB input mux section in the device-specific TRM.

» Custom — provides the ability for users to generate their own custom stimulus.

> BOUNDARY(hide) @

in0 m Custom ==
in_edge0 none -
in_sync0 D

in_custom0

in MNone -

Figure 18. Boundary Input Custom

14 CLB Tool SPRUIR8A-September 2019—-Revised April 2020

Submit Documentation Feedback
Copyright © 2019-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A

I

TEXAS
INSTRUMENTS

www.ti.com Examples

4.1.3

In order to use this option, the user must enter the systemC commands in the line marked “in_custom”.
This is an advanced feature of the tool and no examples are provided in the current version.

Running the Simulation

Once the CLB configuration and input stimuli have been defined, the user can compile the project. The
“CLB.vcd"” file is generated after the post build steps have completed.

Assuming that the configuration of the waveform viewer has been completed, double-clicking on this file
should open the viewer and allow the waveforms to be inspected. Figure 19 shows the GTKwave viewer
set up to display a sample of input waveforms. For information on how to add and view signals, see the

viewer documentation.

Fle Ede Search Time Markers View lelp

O Qe 4 ks Fromfime Tofwm | G | Marker: 8950 ms | Cursor: T10ms

= 58T

Sepat
[Fime

Figure 19. CLB Simulation Example

If the simulated waveforms do not match expectation, the user typically modifies the configuration in the
.syscfg file and repeat the simulation.

5 Examples
This version of the CLB tool is supplied with examples showing how to configure the CLB to implement
simple combinatorial and sequential logic circuits. Two sets of examples are supplied: for F28379D and
F280049. There are minor code differences between these two sets, however, the instructions for running
the examples are similar.

5.1 Basic Examples
The objective of these examples is to showcase the capabilities of the submodules inside each CLB TILE.
They each describe a handful of submodules and how to implement simple logic using a combination of
them.

5.1.1 CLB Empty Project
This example is an empty CLB project with post-build steps to generate the “.OUT" target binary, the
simulation “.VCD” and the HTML block diagram.

5.1.2 Example 7 — State Machine
Designing With The C2000 Configurable Logic Block describes how to design an application using CLB by
going through the design process step by step. This example uses all submodules inside a CLB TILE in
order to implement a complete system.

5.1.3 Example 8 — External AND Gate
In this example, two external signals from two GPIOs are passed through the Input X-BAR and the CLB X-
BAR to the CLB TILE. Inside the CLB module these two signals are ANDED. The output of the AND gate
is then exported to a GPIO, using Output X-BAR.

SPRUIR8A-September 2019—-Revised April 2020 CLB Tool 15

Submit Documentation Feedback

Copyright © 2019-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A
http://www.ti.com/lit/pdf/SPRACL3

13 TEXAS
INSTRUMENTS

Examples www.ti.com

514

515

5.1.6

5.1.7

5.1.8

5.1.9

5.1.10

Example 9 — Timer

In this example, a COUNTER module is used to create timed events. The use of the GP Register is
shown. Through setting/clearing the bits in the GP register, the timer is started, stopped or changes
direction. The output of the timer event (1-clock cycle) is exported to a GPIO. Interrupts are generated
from the timer event using the HLC module. A GPIO is also toggled inside the CLB ISR. The indirect CLB
register access is used to update the timer’'s event match value and the active counter register to modify
the frequency of the timer.

Example 10 — Timer With Two States

In this example, the timer is setup the same as the previous example. The difference is the use of the
FSM submodule to toggle the output of the CLB which is then exported to a GPIO. The FSM module acts
as a single bit memory block. Interrupts are setup in the same format as the previous example. The
interrupt delay of the CLB can be seen by comparing the output of the CLB and the GPIO toggled in the
ISR.

Example 11 — Interrupt Tag

In this example, a timer is setup with two different match values. These two events are used by the HLC
submodule to generate interrupts. The interrupt TAG is used to differentiate between the interrupt
generated due to the matchl event of the CLB counter and the match2 event of the CLB counter.

Example 12 — Output Intersect

In this example, the CLB module is set up the same as the external_AND_gate example. However,
instead of the output being exported to the GPIO using Output X-BAR, the output is exported to the GPIO
by replacing the output of ePWML. This is done by configuring the GPIO for EPWM1A output, followed by
enabling output intersection.

Example 13 — PUSH-PULL Interface

In this example, the use of the PUSH-PULL interface is shown. Multiple COUNTER submodules, HLC
submodule, FSM submodules, and OUTLUT submodules are used. The PUSH-PULL interface is used
alongside the GP register to update the COUNTER submodules’ event frequencies.

Example 14 — Multi-Tile

In this example the output of a CLB TILE is passed to the input of another CLB TILE. The output of the
second CLB TILE is then exported to a GPIO, showcasing how two CLB TILEs can be used in series.

Example 15 — Tile to Tile Delay

In this example the output of a GPIO is taken into the CLB TILE through INPUT XBAR and the CLB
XBAR. The signal is forwarded by the TILE to the next TILE. This time the signal only goes through the
CLB XBAR and NOT the Input XBAR. This is done to show that delays are added when the signals are
passed from TILE to TILE and the delay is NOT characterized. The user should always avoid passing
signals with timing requirements between tiles. The COUNTER modules inside the CLBs will count the
amount of delay in cycles.

16

CLB Tool SPRUIR8A-September 2019—-Revised April 2020

Submit Documentation Feedback
Copyright © 2019-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A

13 TEXAS
INSTRUMENTS

www.ti.com Examples

5.2 Example 1 — Combinatorial Logic

The objective of this example is to prevent simultaneous high or low outputs on a PWM pair. PWM
modules 1 and 2 are configured to generate identical waveforms based on a fixed frequency up-count
mode. The time-base of PWM2 is synchronized to that of PWML1 as shown in Figure 20.

Master

Phase Reg En Syncin

(oo }—o ot
| 0-0 | PWM1A
CNT=Zer040\:
CNT-CMPB—O | PWMIB
©) X
SyncOut

Slave y
Phase Reg En Syncin
O = Var O O]
| ©=Var | PWM2A
CNT=Zero—O
CNT=CMPB—0O PWM2B

@ o)
SyncOut
v

Figure 20. Example 9: EPWM Synchronization

The PWM waveforms are generated to deliberately force both outputs in each module to be
simultaneously high and low at different times, as shown in Figure 21.

PWMxA |

PWMxB

Figure 21. Example 10: PWM Test Pattern

The intention is to modify these waveforms with the CLB to remove either simultaneous high or
simultaneous low conditions. This represents a simple combinatorial logic example. The logic operates in
three modes: normal, active high, and active low. In normal mode, the PWM signals are passed through
the CLB un-modified. In active high mode, the logic prevents logical ‘1’ outputs from simultaneously
appearing at the PWM pins. Similarly, in active low mode, logical ‘0’ outputs must not appear on both
PWM pins. The mode is selected using a 2-bit field as shown in Table 2.

Table 2. Example 1: Operating Modes

Mode Name Type [MODE 1] [MODE 0]
MO Normal 0 0
M1 Active Low 0 1
M2 Active High 1 0
M3 Reserved 1 1
SPRUIR8A-September 2019—-Revised April 2020 CLB Tool 17

Submit Documentation Feedback
Copyright © 2019-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A

13 TEXAS
INSTRUMENTS

Examples www.ti.com

The logic circuit which implements the patterns is shown in Figure 22. Output signals have “_m” appended
to the name to indicate they may have been modified by the CLB.

PWMA
MO
! M2
—e———O | PWMA_m
M1 !
|
|
|
I
] o—ta 5 |
|
|
|
|
M1
M2 |
—_E>——<—o/o— PWMB_m
MOT
PWMB
Figure 22. Example 1: Logic Diagram
18 CLB Tool SPRUIR8A-September 2019—-Revised April 2020

Submit Documentation Feedback
Copyright © 2019-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A

13 TEXAS
INSTRUMENTS

www.ti.com Examples

The logic above can be implemented using two 4-input LUTs: one for each output signal. Therefore, only a
small part of one CLB tile is involved. In the example, only the signals from the PWM1 module are
modified by the CLB. The signals from PWM2 are carried directly to the device pins for comparison
purposes. The input and output waveforms for PWM1 are shown in Figure 23 (modes 1 and 2).

| | |
3 3 : ’7
PWM2A ‘ } } i
| | |
| | i . | |
| i |
PWM2B | | }
| | |
T I T
		:		
1 I I				
		:		
	!	;		
PWMIA_m !	! i !			
ACTIVE				
LOW :				
PWM1B_m				
:			:	
	!			
:			:	
1 i :	i 1			
i				
PWM1A_m				
ACTIVE			:	
HIGH } } }	} }			
PWM1B_m	!	! !		
; 1 1 ;				
‘ 1 1 ‘ ! ;				
Figure 23. Example 1: Generated PWM
SPRUIR8A-September 2019—-Revised April 2020 CLB Tool 19

Submit Documentation Feedback
Copyright © 2019-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A

Exampl

13 TEXAS
INSTRUMENTS

es www.ti.com

GPREG[0]
GPREG[1]

PWM1A

PWM1B

The required logic is implemented using 4-input LUTs 0 and 1. Each of these is connected to the two
PWM signals, and the two LSBs of the software “mode” variable, which are written to the GPREG register.
The CLB outputs are connected to the PWM1A and PWM1B signals which then go to GPIO pins and 1,
respectively. Figure 24 conceptually shows the connections to and from the CLB tile.

CLB_OUT_EN[0]

N
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
)
v

—_— e e e e — - —

MODE[0]

\ 4

PWM1A_m
MODE[1]

\ 4

LUT4 0 > OUTLUT_0

\ 4

A 4

CLB_OUT_EN[2]

CLB TILE 1

\ 4

\ 4

PWM1B_m

Y

LUT4_1

A 4

OUTLUT_2

A 4
\ 4

U S

Figure 24. Example 1: CLB Configuration

To run the example, follow this procedure:
1. Click “Project — Import CCS Projects...”
2. Navigate to the CLB tool example directory. The path is:
a. [C2000Ware]\driverlib\f2837xd\examples\cpul\clb\ccs, or
b. [C2000Ware\driverlib\f28004x\examples\clb\ccs, or
c. [C2000Ware]\driverlib\f2838x\examples\c28x\clb\ccs
In the description that follows, it is assumed the C2000Ware directory above is in use.
3. Select the project “clb_ex1_combinatorial_logic” and click “Finish”.

4. In the CCS Project Explorer window, expand the project “clb_ex1_combinatorial_logic” and open the
file “clb_ex1_combinatorial_logic.syscfg”.

5. Inspect the configuration of the tile and observe the logical expressions in LUT4_0 and LUT4_1, and
the configuration of the output LUTSs.

6. From the CCS menu, select “Project — Build Project”.
7. Monitor the pins.

The Launchpad pins to watch the PWMs for the F28379D and Experimenter kit pins for F28388D are
listed, but the Launchpad pins for the F28004x are not listed.

8. Open a CCS Expressions window
9. [Optional] — for instructions on how to run a simulation of the CLB, see Section 4.1.3.
If running the program on an F28379D LaunchPad board, PWM signals 1A and 1B can be monitored on

pins J4/40 and J4/39, respectively. Set up an oscilloscope to monitor the signals at these pins while the
program is running.

If running the program on an experimenter’s kit fitted with a F28388D controlCARD, the signals can be
found on pins 49 and 51, respectively.

20

CLB Tool SPRUIR8A-September 2019—-Revised April 2020

Submit Documentation Feedback
Copyright © 2019-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A

I

TEXAS

INSTRUMENTS

www.ti.com Examples

5.3

Open a CCS Expressions window and add the program variable “mode”. With mode set to the default
value of 0, the PWM signals pass through the CLB without modification. Stop the program and change
mode to 1, then restart the program. The signals should be as shown in the timing diagram above. Repeat
this procedure to change the mode to 2 and verify the signals are as shown in the previous timing
diagram.

Example 2 — GPIO Input Filter

This example demonstrates use of finite state machines (FSMs) and counters to implement a simple
‘glitch’ filter which might, for example, be applied to an incoming GPIO signal to remove unwanted short
duration pulses.

Figure 25 shows in principle what the glitch filter does. An incoming digital signal is sampled at the CLB
clock rate and a counter counts the number of consecutive samples where the input is either high or low.
If this number is equal to or greater than a specified sample window, the filter output takes on the same
value as the input; otherwise the filter output does not change. Figure 25 shows in principle what the filter
does.

INPUT ‘ \

OUTPUT

gec TTETTRITRITEIEEIIEIIEIIE Y

Y/

SAMPLING WINDOW
Figure 25. Example 2: GPIO Glitch Example

SPRUIR8A-September 2019—-Revised April 2020 CLB Tool 21
Submit Documentation Feedback

Copyright © 2019-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A

13 TEXAS
INSTRUMENTS

Examples www.ti.com

The CLB configuration uses one LUT4 to invert the incoming signal, and two counters to count the number
of pulses: one counter for the high pulses, the other for low pulses. When either counter reaches the
sample window length a pulse appears at its ‘matchl1’ output. In this example the filter sample window
length is set to eight. An FSM latches the pulse and implements a simple logic equation to determine the
required level at its ‘SO’ state output. One output LUT is used to convey the FWM output to the peripheral
signal multiplexer for connection to GPIO0. The CLB configuration is shown in Figure 26.

LUT_O
COUNTER_O
BOUNDARY.in0 P 0 ouT »{ mode0
match1
R FSM_0
reset
OUTLUT_0
» EO
SO »| i0 OUT —»CLB1.0UTO0_0
COUNTER_1
p! E1
»| mode0
match1
P reset

Figure 26. Example 2: CLB Configuration

The example code configures the ePWM1 module to generate the test stimulus.

To run the example, follow this procedure:
1. In CCS v9.0 or higher, click “Project — Import CCS Projects...”
2. Navigate to the CLB tool example directory. The path is:
a. [C2000Ware]\driverlib\f2837xd\examples\cpul\clb\ccs, or
b. [C2000Ware\driverlib\f28004x\examples\clb\ccs, or
c. [C2000Ware]\driverlib\f2838x\examples\c28x\clb\ccs
In the description that follows, it is assumed the C2000Ware directory above is in use.
3. Select the project “glitch_filter” and click “Finish”.
4. In the CCS Project Explorer window, expand the project “glitch_filter” and open the file “tile.syscfg”.

5. Inspect the configuration of the tile and observe the settings of the sub-modules LUT4_0,
COUNTER_0, COUNTER_1, and FSM_0. Verify that the configuration matches that in the example
description above.

6. From the CCS menu, select “Project — Build Project”.
7. [Optional] — for instructions on how to run a simulation of the CLB, see Section 4.1.3.

If running the program on an F28379D LaunchPad board, PWM signals 1A and 1B can be monitored on
pins J4/40 and J4/39, respectively. Set up an oscilloscope to monitor the signals at these pins while the
program is running. If running the program on an experimenter’s kit fitted with a F280049 or F28388D
controlCARD, the signals can be found on pins 49 and 51, respectively.

Open a CCS Expressions window and add the program variable “cglitch”. Run the program while
observing PWM signals 1A and 1B. Pause the program and change the value of “cglitch”, then re-start the
program (this process is easier if the expressions window is set to run in “continuous refresh”). For values
of 7 or less the glitch should be removed by the filter because its’ width is less than the sample window.
When “cglitch” is higher than 7 the glitch should appear on both outputs. Notice also that edges on
PWM1A have a small delay compared with those on PWM1B. This is a consequence of the filter method
used.

22

CLB Tool SPRUIR8A-September 2019—-Revised April 2020

Submit Documentation Feedback
Copyright © 2019-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A

13 TEXAS
INSTRUMENTS

www.ti.com

Examples

Figure 27 shows the expected waveforms at the output pins for glitch widths below and above the sample

window setting of 8.

PWM1A
cglitch =6
PWM1B
PWM1A
cglitch = 14 I
I
|
|
PWM1B |
o
|
Delay = 8

Figure 27. Example 2: GPIO Glitch Width

SPRUIR8A-September 2019—-Revised April 2020

Submit Documentation Feedback
Copyright © 2019-2020, Texas Instruments Incorporated

CLB Tool

23

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A

13 TEXAS
INSTRUMENTS

Examples www.ti.com

5.4

COUNTER 0 ¥ \ 4 /
matchl

COUNTER_O.

INTR

PWM

Example 3 — PWM Generation

This example configures a CLB tile as an auxiliary PWM generator. The exampleuses combinatorial logic
(LUTs), state machines (FSMs), counters, and the high level controller (HLC) to demonstrate the PWM
output generation capabilities using CLB.

The PWM generator operatesat the CLBCLK frequency. The FSM is used to set/clear the PWM. The
PWM is set on a CMP match event, which is tied to match2 of the COUNTER_0. The PWM is cleared on
a Zero match event (Z). This event is tied to the COUNTER_0 matchl output.

The PWM register is configured to use active and shadow registers, which is done using the HLC block.
The HLC is used to generate an interrupt on the period match event, matchl. When an interrupt occurs, a
new counter match value is loaded into the HLC register (R0). The new counter match value is then
moved into the match2 register of COUNTER_0. This updates the CMP match value, which in turn
updates the value of the positive duty cycle. In this example, the user alternates between two values for
the positive duty cycle. Figure 28 shows in principle what the PWM generator does. Notice how the duty
cycle in the next period is changed.

VAR > | 7| < »lz] < > 7
D 300 CLBCLK D 300 CLBCLK D 300 CLBCLK D

3usS 3uS 3usS

match2
TBPRD CMPA TBPRD CMPA TBPRD CMPA TBPRD
4 ¥ 4 ¥ 4 ¥)
+—> 4« +—>
100 CLBCLK 150 CLBCLK 100 CLBCLK
1uS 1.5uS 1usS
66% positive duty cycle 50% positive duty cycle 66% positive duty cycle

Figure 28. Example 3: Generated PWM Waveform

The CLB tile takes a PWM enable signal as input and generates an interrupt to the CPU. The CLB tile is
configured to use a counter to count up until the desired period and compare event values are met. When
the counter reaches the compare event match value, at output ‘match2’, the output is driven high and
remains high until the counter value for the period match, at output ‘matchl’, is met or a counter reset is
triggered. When the period event or reset occurs, the counter is reset to 0 and the output is driven low and
the counter begins counting up. This output logic is configured using the logical equation entered in the
FSM. In this example, the period is 300 CLBCLK cycles (3 us). The compare event occurs at either 100
CLBCLK cycles (1 us) or 150 CLBCLK cycles (1.5 ps).

The PWM signal can be viewed by feeding the output of the FSM into OUTLUT _4. In order to view the
output on a scope, it has to be transmitted via the Output X-BAR to the GPIO Mux.

To run the example, follow this procedure:
1. In CCS v9.0 or higher, click “Project — Import CCS Projects...”
2. Navigate to the CLB tool example directory. The path is:
a. [C2000Ware]\driverlib\f2837xd\examples\cpul\clb\ccs, or
b. [C2000Ware\driverlib\f28004x\examples\clb\ccs, or
c. [C2000Ware]\driverlib\f2838x\examples\c28x\clb\ccs
In the description that follows, it is assumed the C2000Ware directory above is in use.
3. Select the project “clb_ex3_auxiliary_pwm?”, and click “Finish”.
4. In the CCS Project Explorer window, expand the project and open the file “clb_ex3 aux_pwm.syscfg”.

5. Inspect the configuration of the tile and observe the logical expressions in LUT4_0, COUNTER _0,
FSM_0, and the configuration of the HLC and the output LUT.

6. From the CCS menu, select “Project — Build Project”.

24

CLB Tool SPRUIR8A-September 2019—-Revised April 2020

Submit Documentation Feedback
Copyright © 2019-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A

I

www.ti.com

TEXAS
INSTRUMENTS

Examples

7. View the CLB Tile block diagram by opening the "Debug/syscfg/clb.html" file
8. [Optional] — for instructions on how to run a simulation of the CLB, see Section 4.1.3.
9. To view the PWM and interrupt signals, set up an oscilloscope and monitor the following pins while the

program is running. The table below shows the pin to monitor for each respective board.

5.5

Signal F28379D LaunchPad F280049 controlCARD F28388D control CARD

Interrupt GPIOO on pins J4/40 pin 49 (GPIOO0) pin 49 (GPIOO0)

Auxiliary PWM OutputXBAR1 signal on pins pin 53 (OutputXBAR1) pin 53 (OutputXBAR1)
J4/34

10. Open a CCS Expressions window and add the program variable dutyValue. While the program is
running, you will notice the CMPA value alternates between 100 and 150 CLBCLK cycles every time
the CLB interrupt is serviced. The signals should be as shown in the timing diagram above. Notice that
the PWM period remains the same but the positive duty cycle alternates between 50% and 66%. The
dutyValue variable can be modified within the interrupt service routine.

Example 4 — PWM Protection

This example extends the features of example 1 to ensure an active high complementary pair PWM
configuration always operates with a minimum value of dead-band irrespective of how the generating
PWM module is configured. The example illustrates the configuration of four separate PWM tiles to
implement PWM protection on four PWM modules. The outputs of PWM modules 1 to 4 are operated on
by CLB tiles 1 to 4, respectively.

The protection functionality is enabled by the program variable “mode”. When set to 0 (the default
condition), PWM signals are passed un-modified to the output pins. When set to 1, the PWM outputs are
modified by the CLB to ensure dead-band.
To run the example, follow this procedure:
1. In CCS v9.0 or higher, click “Project — Import CCS Projects...”
2. Navigate to the CLB tool example directory. The path is:
a. [C2000Ware]\driverlib\f2837xd\examples\cpul\clb\ccs, or
b. [C2000Ware\driverlib\f28004x\examples\clb\ccs, or
c. [C2000Ware]\driverlib\f2838x\examples\c28x\clb\ccs
In the description that follows, it is assumed the C2000Ware directory above is in use.
3. Select the project “clb_ex4 _pwm_protection”, and click “Finish”.

4. In the CCS Project Explorer window, expand the project “clb_ex4 pwm_protection” and open the file
“clb_ex_pwm_protection.syscfg”.

5. From the CCS menu, select “Project — Build Project”.

6. Use an oscilloscope to observe the PWM signal pairs on the following pins of each
LaunchPad/Docking Station board.

Table 3. Example 4: Signal Connections

PWM Tile F28379D LaunchPad F280049 LaunchPad F28388 Dock Station
1A 1 J4/40 J8/60 49
1B 1 J4/39 J8/59 51
2A 2 J4/38 J8/56 53
2B 2 J4/37 J8/55 55
3A 3 J4/36 J4/36 50
3B 3 J4/35 J4/35 52
4A 4 J8/80 J8/58 54
4B 4 J8/79 J8/57 56
SPRUIR8A-September 2019—-Revised April 2020 CLB Tool 25

Submit Documentation Feedback

Copyright © 2019-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A

13 TEXAS
INSTRUMENTS

Examples www.ti.com

7. Open a CCS Expressions window and add the program variable “mode”.
8. Run the program and verify that no dead-band exists between each PWM pair.

9. Halt the program, change mode to 1, and run the program again. You should now observe rising edge
dead-band between each PWM pair. The dead-band time is set by the match_1 values loaded into the
two CLB counters, and has been set arbitrarily to 10 in this example.

5.6 Example 5 - Event Window

This example uses the counter, FSM, and HLC sub-modules of the CLB to implement an event timing
feature which detects whether an interrupt service routine takes too long to respond to an interrupt. The
example configures four PWM modules to operate in up-count mode and generate a low-to-high edge on
a timer zero match event. The zero match event also triggers a PWM ISR which, for the purposes of this
example, contains a dummy payload of variable length. At the end of the ISR, a write operation takes
place to a CLB GP register to indicate the ISR has ended.

The PWM timer zero event is detected by a CLB module where it starts a timer. The timer “match 2" count
is set as the maximum expected duration of the corresponding PWM ISR. If the GP register write does not
take place before the match 2 count is reached, the HLC triggers a CLB interrupt. Four PWM modules and
CLB tiles are configured similarly.

Figure 29 gives an outline of how one tile operates. The upper half shows the configuration of the PWM
module to generate a fixed frequency waveform with rising edge on each counter zero match, and falling
edge on compare A match. The zero match event generates a CPU interrupt and the objective is to trigger
a CLB interrupt if the PWM ISR does not complete within a specified time.

INTR

PWM

Counter 0

oz —1__ e e
sl = |

CLB Interrupt T

Figure 29. Example 5: Event Window Configuration

26 CLB Tool SPRUIR8A-September 2019—-Revised April 2020

Submit Documentation Feedback
Copyright © 2019-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A

I

TEXAS
INSTRUMENTS

www.ti.com Examples

5.7

The lower half shows the CLB counter, which commences counting at the start of the PWM ISR. If the ISR
does not respond before the Match 2 value is reached, an interrupt is generated. The CLB ISR contains
an “ESTOP” instruction which acts like a software break-point in the program.

To run the example, follow this procedure:
1. In CCS v9.0 or higher, click “Project — Import CCS Projects...”
2. Navigate to the CLB tool example directory. The path is:
a. [C2000Warel\driverlib\f2837xd\examples\cpul\clb\ccs, or
b. [C2000Ware]\driverlib\f28004x\examples\clb\ccs, or
c. [C2000Ware]\driverlib\f2838x\examples\c28x\clb\ccs
In the description that follows, it is assumed the C2000Ware directory above is in use.
3. Select the project “clb_ex5 event_window”, and click “Finish”.
4. In the CCS Project Explorer window, expand the project “clb_ex5_event_window” and open the file
“clb_ex5_event_window.syscfg”.
5. From the CCS menu, select “Project — Build Project”.
Open a CCS Expressions window and add the four program variables: “payload_x", where ‘X’ is 1 to 4.
Observe that at the start of the program, all payload variables have been set to 45. The payload is

implemented as a ‘for’ loop in each PWM ISR, each iteration of which takes 12 cycles, so a payload of 45
corresponds to approximately 540 cycles.

Open the .syscfg file and inspect the match 2 settings in counter 0 of the four CLB modules. Notice that all
timer limits are set to 3200.

Run the program with the default payloads and verify that the CLB interrupts to not trigger. Then, stop the
program and increase any of the payloads. Re-run the program and determine whether any of the ISR
limits is exceeded. Keep in mind that since the PWMs are not synchronized, the worst case ISR latency is
the cumulative sum of all the payloads plus interrupt overheads.

Example 6 — Signal Generation and Check

This example uses CLBL1 to generate a rectangular wave and CLB2 to check the rectangular wave
generated by CLB1 doesn’t exceed the defined duty cycle and period limits.

CLB1: This example uses the counter and FSM sub-modules of the CLB to implement a rectangular pulse
generator. The counterO generates events on Matchl and Match2 values programmed by the user. While
Match2 value defines the period of the waveform generated, (Match2 — Match1) value would determine
the ON time. State machine uses these events from the counter to generate the waveform — set the output
on Matchl and clear the output on Match2 event. Hence the state bit SO reflects the output waveform
generated. This output is in turn brought out on CLB1 output 4 in order to pass this output to CLB2 via
CLB X-Bar. In0 is used as an enable from software for the waveform generation. This too is passed to
CLB2 via CLB1 Output 5.

CLB2: This example uses the LUTs, counter, FSM, HLC sub-modules of the CLB to implement a checker
on the output generated by CLB1. Following is the signal connectivity to CLB2.

CLB1 Output 4 — CLB X-Bar AUXSIGO — CLB2 inl (via Global Mux)
CLB1 Output 5 — CLB X-Bar AUXSIG1 — CLB2 in2 (via Global Mux)

The counter0 counts during the ON time of the received signal on In1. Counter0 Matchl value is set to the
limit value on the duty cycle. If matchl event occurs it means that the ON time has exceeded the desired
value.

The counterl resets and starts counting on the rising edge of the received signal on In1. Counterl Matchl
value is set to the limit value on the period. If matchl event occurs it means that the Period has exceeded
the desired value.

State machine (FSM1 SO0) is used to detect the rising edge of the received signal on In1 and in turn used
as reset to counter 1.

Whenever either of the counter matchl events described above occur there will be an interrupt generated
to CPU using HLC — as an indicator of the error.

SPRUIR8A-September 2019—-Revised April 2020 CLB Tool 27
Submit Documentation Feedback

Copyright © 2019-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A

13 TEXAS
INSTRUMENTS

Examples www.ti.com

Figure 30 gives an outline of how the tiles operate. The matchl event generates a CPU interrupt and the
objective is to trigger a CLB interrupt upon error condition detected inside CLB2.
CLB1
Match2

CLB2
Match1

Generated
Rectangular |
Wave

CLB2
Counter 0
Match 1

ON time
exceeding the
limit

CLB2
Interrupt

— -

Figure 30. Example 6: Duty Exceeding Pre-Set Value

CLB1
Match2

CLB2
Match1

Generated - = =
Rectangular |
Wave I

CLB2
Counter 1

Match 1

Period
exceeding
Limit

CLB2
Interrupt

|
i

Figure 31. Example 6: Period Exceeding Pre-Set Value

28 CLB Tool SPRUIR8A-September 2019—-Revised April 2020

Submit Documentation Feedback
Copyright © 2019-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A

I

TEXAS
INSTRUMENTS

www.ti.com Examples

5.8

The lower half shows the CLB counter, which commences counting at the start ON time. In the first figure,
the duty cycle check and depicted and period check is depicted in the second. If the Match 1 value is
reached, an interrupt is generated in either case. The CLB ISR contains an “ESTOP” instruction which
acts like a software break-point in the program.

To run the example, follow this procedure:
1. In CCS v9.0 or higher, click “Project — Import CCS Projects...”
2. Navigate to the CLB tool example directory. The path is:
a. [C2000Ware]\driverlib\f2837xd\examples\cpul\clb\ccs, or
b. [C2000Ware]\driverlib\f28004x\examples\clb\ccs, or
c. [C2000Ware\driverlib\f2838x\examples\c28x\clb\ccs
In the description that follows, it is assumed the C2000Ware directory above is in use.
3. 13. Select the project “clb_ex6_siggen”, and click “Finish”.

4. 14. In the CCS Project Explorer window, expand the project “clb_ex6_siggen” and open the file
“clb_ex6_siggen.syscfg”.

5. From the CCS menu, select “Project — Build Project”.

Open the SysCfq file (clb_ex6_siggen.syscfg) in the CCS window and inspect the match 1/2 settings in
counter 0 of the CLB1 module. Change these values to update the duty and period of the generated
output.

Inspect the match 1 settings of counter 0/1 in the CLB2 module. Change these values to update the duty
and period values being checked on the generated output.

Run the program with the default values and verify that the CLB interrupts to not trigger. Then, change the
values to result in an error (ex: change CLB2 Counterl Matchl to 400). Rebuild and run the program to
see the code stop inside the CLB2 interrupt service routine.

Example 17 — One-Shot PWM Generation

This example demonstrates how a CLB tile can be configured to act as a one-shot PWM generator. The
example makes use of combinatorial logic (LUTS), state machines (FSMs), counters, and the HLC to
demonstrate the one-shot PWM output generation capabilities on receipt of an external/software trigger.

. Lo,

—_—
MUX

SOFT_TRIGGER
—

Figure 32. Missing Title

The CLB tile is configured to simulate a one-shot timer on receipt of a trigger the timer starts counting
from zero, reaches the MATCH value and then stops counting till the next trigger is received. The output is
driven HIGH while counter is counting and is driven LOW when counter reaches the MAX and stops
counting. The above logic is implemented using LUT, FSM and counter. Another counter is used to make
sure that the following system responds only to a rising edge event instead of input level. The example
also supports variable pulse width using HLC submodule and CLB interrupt mechanism. The HLC is used
to generate an interrupt after every 3rd trigger event (which is tracked by another counter) and the pulse
width is updated by the application. The range of the output pulse width configured in the example is 0.2
us - 0.8 us with a step increase of 50 ns in every interrupt ISR. The PWM register is configured to use
active and shadow registers, which is also done using the HLC block.

SPRUIR8A-September 2019—-Revised April 2020 CLB Tool 29
Submit Documentation Feedback

Copyright © 2019-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A

Examples

i3 TEXAS
INSTRUMENTS

www.ti.com

The overall CLB configuration can be visualized as shown in Figure 33.

reset zero

ovent |TILE1_COUNTER_2 [maton1 [TILE1_BOUNDARY]
mode0| evAction = Load [match2 1o TILE1_FSM_0 . -
mode1 12 0 - (~e0 & (~e1) & 50) | 60 0 outt
xe0| ~ ~ st i1 TILE1_LUT_0 oyt U2
[ILET BOUNDARY| el out 2 out=-~i0
TILE1_BOUNDARY 5 0l1iLE1_ouTLUT 4 out3

out
Period = 100, Duty = 5

in0 — ! it out —»] outd

o o out=i0s i G
i — outs
i3 o7
" - reset zer0

ind — rese zer0 [TILE1_COUNTER_0

S ovent | TILE1_COUNTER_1 [match TILE1_HLC Tl 0 |matent

evAction = None | match2

a[R[2]

in6 — mode0| evAction = Add |match2

mode1
in7 — g mode1
1

Figure 33. Example 17: Overall CLB configuration

The example supports two modes of configuration: software based trigger and external signal based
trigger. The desired mode can be chosen by setting the EXAMPLE_MODE define as 0/1. In case of
software based trigger, you can manually update the SOFT_TRIGGER from 0 to 1 in CCS expression
window and observe the one-shot pulse output on oscilloscope. Note to make sure that the variable was
set to ‘0’ before setting it to ‘1’, because the CLB system responds only to a rising edge. While in the case
of external signal based trigger, the EPWM module is configured to generate a trigger signal of 1 MHz
with a very short ON time (10% duty). This EPWM generated signal on GPIOO is routed as the trigger
input for CLB internally, thus no external connections are required.

To
1.
2.

© x© N

10.

11.

run the example, follow this procedure:
In CCS v9.0 or higher, click “Project -> Import CCS Projects...”
Navigate to the CLB tool example directory. The path is:

a. [C2000Warel\driverlib\f28004x\examples\clb\ccs, or In the description that follows, it is assumed
the C2000Ware directory above is in use.

Select the project “clb_ex17_one_shot_pwm?”, and click “Finish”.

In the CCS Project Explorer window, expand the project “clb_ex17_one_shot_pwm” and open the file
“clb_ex17_one_shot_pwm.syscfg”.

Inspect the configuration of the tile and observe the logical expressions in LUT_0 and FSM_0,
COUNTER_0, COUNTER_1, COUNTER_2,HLC and the output LUT.

Configure EXAMPLE_MODE as 0/1 to operate in software/external trigger mode.
From the CCS menu, select “Project -> Build Project”.

[Optional] — for instructions on how to run a simulation of the CLB, see Section 4.1.3.
Load the example on F28004x control card.

If software trigger mode is chosen:

a. Add SOFT_TRIGGER variable to CCS expression window.

b. Connect GPIO2 to oscilloscope and make sure the oscilloscope is in “One-shot” mode instead of
“FREE_RUN?".

¢. Run the example and set SOFT_TRIGGER =1 in window, you should be able to observe the
single pulse on oscilloscope.

d. Set SOFT_TRIGGER = 0 first and then SOFT_TRIGGER = 1 to generate the next pulse.
e. Repeat the above step every time to provide rising edge trigger.

f. After every three triggers, the pulse would be increased by 50 ns.

If external trigger mode is chosen:

a. Connect GPIOO (trigger signal) and GPIO2 (output) to the oscilloscope and configure the
oscilloscope in FREE_RUN mode.

b. You should observe a linear variation in output pulse width after every 3rd rising edge of trigger
signal.

30 CLB Tool SPRUIR8A-September 2019—Revised April 2020

Submit Documentation Feedback
Copyright © 2019-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A

13 TEXAS
INSTRUMENTS

www.ti.com Enabling CLB Tool In Existing DriverLib Projects

6 Enabling CLB Tool In Existing DriverLib Projects

Use the following steps to add CLB support to an existing C2000WARE DriverLib Project:

1. Add the "empty.syscfg" file (For F2837xD
[C2000Ware\driverlib\f2837xd\examples\cpul\clb\ccs\empty.syscfg) from the CLB examples folder to
the project by copying the file into the project.

2. CCs will ask the user whether or not to enable SysConfig. Accept and select "Yes"

i N

v+ Enable SysConfig? -

,:6:, To build the file 'clb.syscfg’, SysConfig should be added to the project's tool-chain.

Enable SysConfig for project 'epwm_ex]1_trip_zone'?

Yes l | Mo

Figure 34. Enable SysConfig

3. Open the "Project Properties" and open the Resources — Linked Resources. Add the following
Variable Paths,
a. CLB_SYSCFG_ROOT
[PATH_TO_C2000WARE]\tilities\clb_tool\clb_syscfg
b. CLB_SIM_COMPILER
C:\TDM-GCC-64\bin
c. SYSTEMC_INSTALL
[PATH_TO_C2000WARE]\utilities\clb_tool\clb_syscfg\systemc-2.3.3
d. C2000WARE_ROOT
[PATH_TO_C2000WARE]
4. In the Project Properties window, select Build — Steps
5. Add the following lines to the Post-build steps
a. mkdir "${BuildDirectory\simulation"

b. ${CLB_SIM_COMPILER}\g++ -c -DCLB_SIM -I${SYSTEMC_INSTALL}\src -
I${C2000WARE_ROOT \utilities\clb_tool\clb_syscfg\systemclinclude -I${PROJECT_ROOT} -
I${CLB_SIM_COMPILER}include -Og -g -gdwarf-3 -gstrict-dwarf -Wall -MMD -MP -
MF${BuildDirectory}\simulation\clb_sim.d -MT${BuildDirectory}\simulation\clb_sim.o -
I${BuildDirectory}\syscfg -fno-threadsafe-statics -o${BuildDirectory}\simulation\clb_sim.o
${BuildDirectory}\syscfg\clb_sim.cpp

c. ${CLB_SIM_COMPILER}\g++ -DCLB_SIM -Og -g -gdwarf-3 -gstrict-dwarf -Wall -WI,-
Map,${BuildDirectory}\simulation\simulation_output.map -L${SYSTEMC_INSTALL}build\src -
o${BuildDirectory}\simulation\simulation_output.exe ${BuildDirectory\simulation\clb_sim.o
${C2000WARE_ROOTNutilities\clb_tool\clb_syscfg\systemc\src\CLB_FSM_SC_model.o
${C2000WARE_ROOT}utilities\clb_tool\clb_syscfg\systemc\src\CLB_HLC SC_model.o
${C2000WARE_ROOTNutilities\clb_tool\clb_syscfg\systemc\src\CLB_LUT4_SC_model.o
${C2000WARE_ROOTNutilities\clb_tool\clb_syscfg\systemc\src\CLB_OutputLUT_SC_model.o
${C2000WARE_ROOTNutilities\clb_tool\clb_syscfg\systemc\src\CLB_counter_SC_model.o -WI,--
start-group -Isystemc -WI,--end-group

d. \simulation\simulation_output.exe

e. ${NODE_TOOL} "${CLB_SYSCFG_ROOT}/dot _file_libraries/clbDotUtility.js"
"${CLB_SYSCFG_ROOT}" "${BuildDirectory}/syscfg" "${BuildDirectory}/syscfg/clb.dot"

SPRUIR8A-September 2019—-Revised April 2020 CLB Tool 31

Submit Documentation Feedback
Copyright © 2019-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A

13 TEXAS

INSTRUMENTS
Enabling CLB Tool In Existing DriverLib Projects www.ti.com
6. The final Post-build steps should look similar to those in Figure 35.
we Properties for epwm_ex1_trip_zone = P
type filter text Build L= v v
4 Resource
Linked Resources
Resource Filters Configuration: lCPUl_RAM [Active] 'l [Manage Conﬁgurations...l
General
4 Build ;
> SysConfig larg Builderl E] Validatorl @ Variables | P& Environment | 3 Steps | #| Link Order | = Dependencies|
> C2000 Compiler Pre-build steps
> C2000 Linker N
C2000 Hex Utility [Disabl
Debug -
Project Matures 4)
Description:
Post-build steps
mkdir "${BuildDirectory}\simulation” -
${CLB_SIM_COMPILERMg++ -c -DCLB_SIM -I${SYSTEMC_INSTALLMsrc -1${C2000WARE_ROOTMutili
${CLB_SIM_COMPILER\g++ -DCLB_SIM -Og -g -gdwarf-3 -gstrict-dwarf -Wall -WI,-Map,${BuildDit
Asimulation\simulation_output.exe
${NODE_TOOL} "${CLB_SYSCFG_ROOT}/dot_file_libraries/clbDotUtilityjs" "${CLB_SYSCFG_ROCT}" "
< | 111 }
Description:
« | T [» See 'General' for changing tool versions and device settings
® Show advanced settings Apply and Close] l Cancel
Figure 35. Post-build Steps
32 CLB Tool SPRUIR8A-September 2019—Revised April 2020

Submit Documentation Feedback
Copyright © 2019-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A

13 TEXAS
INSTRUMENTS

www.ti.com

Enabling CLB Tool In Existing DriverLib Projects

7. Next, open Build — SysConfig — Basic Options and add the following to the Root system config meta

data list

a. ${CLB_SYSCFG_ROOT}/.metadata/product.json

'« Properties for epwm_ex1_trip_zone

type filter text

» Resource
General
4 Build
4 SysConfig
Basic Options
Output
Miscellaneous
» C2000 Compiler
> C2000 Linker
C2000 Hex Utility [Disabl
Debug
Project Natures

< | 11 | »

® Show advanced settings

Basic Options

Configuration: |[CPU1_RAM [Active]

'l lManage Configurations...

Name of device (-d, --device)
MName of the board file (-b, --board)

Root system config meta data file in a product or SDK (-s, --product)

£

»+ Add file path

File:

${CLB_SYSCFG_ROOT};’.metadata;’product.json|

Workspace... H Variables... H Browse...

OK

] l Cancel l

-

—
Apply and Close Cancel

Figure 36. SysConfig SDK Path

8. Finally click Apply and Close

SPRUIR8A-September 2019—-Revised April 2020

Submit Documentation Feedback

Copyright © 2019-2020, Texas Instruments Incorporated

CLB Tool

33

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A

13 TEXAS
INSTRUMENTS

Enabling CLB Tool In Existing DriverLib Projects www.ti.com

9. After building the project, the content generated by the CLB Tool will be present in the "Build
Directory". Figure 37 shows an example of this after adding CLB support to the epwm_ex1_trip_zone
driverlib example.

Iy Project Explorer & S
4 > epwm_ex1_trip_zone [Active - CPU1_RAM] -
> @ Generated Source
> ¥ Binaries
b Y Includes
4 (= CPU1_RAM
4 (= device
» @b device.obj - [C2000/1e]
» [@ F2837xD_CodeStartBranch.obj - [C2000/le] . .
® deviced Simulation Folder
@ subdir_rules.mk
_® subdir_vars.m
4 (= simulation
=l clb_sim.d

clb_sim.o SysConfig Folder

simulation_output.exe

EDED @

= simulation_output.map
4 (= syscfg
¢ L€ clb_config.c
» [# clb_config.h
¢ € clb_sim.cpp
» @ clb_config.obj - [C2000/1e]
v b clb_sim.obj - [C2000/1e]
& clb_configd Block Diagram
= clb_sim.d
| clb.dot
@ clb.html

@ clbsvg Simulation File For

o) epwm_ex1_trip_zone.obj - [C2000/le]
- @ epwm_ex1_trip_zone.out - [C2000/le W ave Vlewer
= ccsObjs.opt
=| CLB.ved

= epwm_ex1_trip_zone_linkInfo.xml

 .\simulation\simulation_outpu

Info: (1703) tracing timescali

E epwm_exl_tr!p_zone.d C:/ti/ccs918/ccs/tools/node/m
- epwmfe"l—t"p—z°"e-map "C:/ti/testclb/C2000Ware_2_00
Lo makefile scfg/dot_file_libraries/clbDo
L& objects.mk "C:/ti/testclb/C2000Ware_2 00
[sources.mk T scfg”
Figure 37. epwm_ex1_trip_zone With CLB Tool Support
34 CLB Tool SPRUIR8A-September 2019—Revised April 2020

Submit Documentation Feedback
Copyright © 2019-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A

I3 TEXAS
INSTRUMENTS
www.ti.com Frequently Asked Questions (FAQS)
7 Frequently Asked Questions (FAQS)
Question: My existing CLB project is not compatible with the latest CLB package. | observe the following
build error in CCS problems window: “No such resource: /TILE.syscfg.js”.
Answer: Recent changes in the SysConfig now require the .syscfg file for the project to be modified and
updated to reflect the new location of the TILE resource within the CLB package
NOTE: In order to update the file, you will need to modify the .syscfg file with a text editor.
Update the following line of code:
var TILE = scripting.addModule("/TILE");
replace with
var TILE = scripting.addModule("/utilities/clb_tool/clb_syscfg/source/TILE");
SPRUIRBA—September 2019—Revised April 2020 CLB Tool 35

Submit Documentation Feedback

Copyright © 2019-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A

13 TEXAS

INSTRUMENTS

Revision History www.ti.com
Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Original (September 2019) to A Revision Page
e Update Was Made iN SECHON 2.2.2. ... iaiee s taate s taaare s raaasa e ssantessaantessaaansessanntssaaannsssaannesssannnessnnnes 6
e Updates were made iN SECHON 5.2, 1. uuiuiiieeiiiiee st saae et r e raa s ss i r et s n et s s ae s s aaaa et taasansssannnnnsns 17
LI Yo [0 [= o B Lo = Tox 1 T I T 29
36 Revision History SPRUIR8A-September 2019—Revised April 2020

Submit Documentation Feedback
Copyright © 2019-2020, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIR8A

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with Tl products. You are solely responsible for (1) selecting the appropriate
Tl products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Tl grants you
permission to use these resources only for development of an application that uses the Tl products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third
party intellectual property right. Tl disclaims responsibility for, and you will fully indemnify Tl and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such Tl products. TI's provision of these resources does not expand or otherwise alter TI's applicable
warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	CLB Tool
	1 Introduction
	1.1 CLB Tool Outline
	1.2 Overview of the CLB Configuration Process

	2 Getting Started
	2.1 Introduction
	2.2 Installation
	2.2.1 GNU Compiler
	2.2.2 Install the Simulation Viewer

	3 Using the CLB Tool
	3.1 Import The Empty CLB Project
	3.2 Updating Variable Paths
	3.3 Configuring a CLB Tile

	4 The CLB Simulator
	4.1 Using the Simulator
	4.1.1 The Statics Panel
	4.1.2 Creating the Input Stimulus
	4.1.3 Running the Simulation

	5 Examples
	5.1 Basic Examples
	5.1.1 CLB Empty Project
	5.1.2 Example 7 – State Machine
	5.1.3 Example 8 – External AND Gate
	5.1.4 Example 9 – Timer
	5.1.5 Example 10 – Timer With Two States
	5.1.6 Example 11 – Interrupt Tag
	5.1.7 Example 12 – Output Intersect
	5.1.8 Example 13 – PUSH-PULL Interface
	5.1.9 Example 14 – Multi-Tile
	5.1.10 Example 15 – Tile to Tile Delay

	5.2 Example 1 – Combinatorial Logic
	5.3 Example 2 – GPIO Input Filter
	5.4 Example 3 – PWM Generation
	5.5 Example 4 – PWM Protection
	5.6 Example 5 – Event Window
	5.7 Example 6 – Signal Generation and Check
	5.8 Example 17 – One-Shot PWM Generation

	6 Enabling CLB Tool In Existing DriverLib Projects
	7 Frequently Asked Questions (FAQs)

	Revision History
	Important Notice

